Solve for x, y
x=2\text{, }y=2
x=-\frac{2}{9}\approx -0.222222222\text{, }y=-\frac{22}{9}\approx -2.444444444
Graph
Share
Copied to clipboard
2x-y=2,2y^{2}+x^{2}=12
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
2x-y=2
Solve 2x-y=2 for x by isolating x on the left hand side of the equal sign.
2x=y+2
Subtract -y from both sides of the equation.
x=\frac{1}{2}y+1
Divide both sides by 2.
2y^{2}+\left(\frac{1}{2}y+1\right)^{2}=12
Substitute \frac{1}{2}y+1 for x in the other equation, 2y^{2}+x^{2}=12.
2y^{2}+\frac{1}{4}y^{2}+y+1=12
Square \frac{1}{2}y+1.
\frac{9}{4}y^{2}+y+1=12
Add 2y^{2} to \frac{1}{4}y^{2}.
\frac{9}{4}y^{2}+y-11=0
Subtract 12 from both sides of the equation.
y=\frac{-1±\sqrt{1^{2}-4\times \frac{9}{4}\left(-11\right)}}{2\times \frac{9}{4}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2+1\times \left(\frac{1}{2}\right)^{2} for a, 1\times 1\times \frac{1}{2}\times 2 for b, and -11 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-1±\sqrt{1-4\times \frac{9}{4}\left(-11\right)}}{2\times \frac{9}{4}}
Square 1\times 1\times \frac{1}{2}\times 2.
y=\frac{-1±\sqrt{1-9\left(-11\right)}}{2\times \frac{9}{4}}
Multiply -4 times 2+1\times \left(\frac{1}{2}\right)^{2}.
y=\frac{-1±\sqrt{1+99}}{2\times \frac{9}{4}}
Multiply -9 times -11.
y=\frac{-1±\sqrt{100}}{2\times \frac{9}{4}}
Add 1 to 99.
y=\frac{-1±10}{2\times \frac{9}{4}}
Take the square root of 100.
y=\frac{-1±10}{\frac{9}{2}}
Multiply 2 times 2+1\times \left(\frac{1}{2}\right)^{2}.
y=\frac{9}{\frac{9}{2}}
Now solve the equation y=\frac{-1±10}{\frac{9}{2}} when ± is plus. Add -1 to 10.
y=2
Divide 9 by \frac{9}{2} by multiplying 9 by the reciprocal of \frac{9}{2}.
y=-\frac{11}{\frac{9}{2}}
Now solve the equation y=\frac{-1±10}{\frac{9}{2}} when ± is minus. Subtract 10 from -1.
y=-\frac{22}{9}
Divide -11 by \frac{9}{2} by multiplying -11 by the reciprocal of \frac{9}{2}.
x=\frac{1}{2}\times 2+1
There are two solutions for y: 2 and -\frac{22}{9}. Substitute 2 for y in the equation x=\frac{1}{2}y+1 to find the corresponding solution for x that satisfies both equations.
x=1+1
Multiply \frac{1}{2} times 2.
x=2
Add \frac{1}{2}\times 2 to 1.
x=\frac{1}{2}\left(-\frac{22}{9}\right)+1
Now substitute -\frac{22}{9} for y in the equation x=\frac{1}{2}y+1 and solve to find the corresponding solution for x that satisfies both equations.
x=-\frac{11}{9}+1
Multiply \frac{1}{2} times -\frac{22}{9} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
x=-\frac{2}{9}
Add -\frac{22}{9}\times \frac{1}{2} to 1.
x=2,y=2\text{ or }x=-\frac{2}{9},y=-\frac{22}{9}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}