Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

14x-4y=0,-15x+31y=600
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
14x-4y=0
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
14x=4y
Add 4y to both sides of the equation.
x=\frac{1}{14}\times 4y
Divide both sides by 14.
x=\frac{2}{7}y
Multiply \frac{1}{14} times 4y.
-15\times \frac{2}{7}y+31y=600
Substitute \frac{2y}{7} for x in the other equation, -15x+31y=600.
-\frac{30}{7}y+31y=600
Multiply -15 times \frac{2y}{7}.
\frac{187}{7}y=600
Add -\frac{30y}{7} to 31y.
y=\frac{4200}{187}
Divide both sides of the equation by \frac{187}{7}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=\frac{2}{7}\times \frac{4200}{187}
Substitute \frac{4200}{187} for y in x=\frac{2}{7}y. Because the resulting equation contains only one variable, you can solve for x directly.
x=\frac{1200}{187}
Multiply \frac{2}{7} times \frac{4200}{187} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
x=\frac{1200}{187},y=\frac{4200}{187}
The system is now solved.
14x-4y=0,-15x+31y=600
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}14&-4\\-15&31\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\600\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}14&-4\\-15&31\end{matrix}\right))\left(\begin{matrix}14&-4\\-15&31\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}14&-4\\-15&31\end{matrix}\right))\left(\begin{matrix}0\\600\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}14&-4\\-15&31\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}14&-4\\-15&31\end{matrix}\right))\left(\begin{matrix}0\\600\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}14&-4\\-15&31\end{matrix}\right))\left(\begin{matrix}0\\600\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{31}{14\times 31-\left(-4\left(-15\right)\right)}&-\frac{-4}{14\times 31-\left(-4\left(-15\right)\right)}\\-\frac{-15}{14\times 31-\left(-4\left(-15\right)\right)}&\frac{14}{14\times 31-\left(-4\left(-15\right)\right)}\end{matrix}\right)\left(\begin{matrix}0\\600\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{31}{374}&\frac{2}{187}\\\frac{15}{374}&\frac{7}{187}\end{matrix}\right)\left(\begin{matrix}0\\600\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{187}\times 600\\\frac{7}{187}\times 600\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1200}{187}\\\frac{4200}{187}\end{matrix}\right)
Do the arithmetic.
x=\frac{1200}{187},y=\frac{4200}{187}
Extract the matrix elements x and y.
14x-4y=0,-15x+31y=600
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
-15\times 14x-15\left(-4\right)y=0,14\left(-15\right)x+14\times 31y=14\times 600
To make 14x and -15x equal, multiply all terms on each side of the first equation by -15 and all terms on each side of the second by 14.
-210x+60y=0,-210x+434y=8400
Simplify.
-210x+210x+60y-434y=-8400
Subtract -210x+434y=8400 from -210x+60y=0 by subtracting like terms on each side of the equal sign.
60y-434y=-8400
Add -210x to 210x. Terms -210x and 210x cancel out, leaving an equation with only one variable that can be solved.
-374y=-8400
Add 60y to -434y.
y=\frac{4200}{187}
Divide both sides by -374.
-15x+31\times \frac{4200}{187}=600
Substitute \frac{4200}{187} for y in -15x+31y=600. Because the resulting equation contains only one variable, you can solve for x directly.
-15x+\frac{130200}{187}=600
Multiply 31 times \frac{4200}{187}.
-15x=-\frac{18000}{187}
Subtract \frac{130200}{187} from both sides of the equation.
x=\frac{1200}{187}
Divide both sides by -15.
x=\frac{1200}{187},y=\frac{4200}{187}
The system is now solved.