Solve for x, y
y=-5500
Graph
Share
Copied to clipboard
12000=20x+5250
Consider the first equation. Multiply 15 and 350 to get 5250.
20x+5250=12000
Swap sides so that all variable terms are on the left hand side.
20x=12000-5250
Subtract 5250 from both sides.
20x=6750
Subtract 5250 from 12000 to get 6750.
x=\frac{6750}{20}
Divide both sides by 20.
x=\frac{675}{2}
Reduce the fraction \frac{6750}{20} to lowest terms by extracting and canceling out 10.
y=10\left(800-4\times \frac{675}{2}\right)
Consider the second equation. Insert the known values of variables into the equation.
y=10\left(800-1350\right)
Multiply -4 and \frac{675}{2} to get -1350.
y=10\left(-550\right)
Subtract 1350 from 800 to get -550.
y=-5500
Multiply 10 and -550 to get -5500.
x=\frac{675}{2} y=-5500
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}