Solve for x, y
x=34
y=136
Graph
Share
Copied to clipboard
0.6x+0.85y=136,x+y=170
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
0.6x+0.85y=136
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
0.6x=-0.85y+136
Subtract \frac{17y}{20} from both sides of the equation.
x=\frac{5}{3}\left(-0.85y+136\right)
Divide both sides of the equation by 0.6, which is the same as multiplying both sides by the reciprocal of the fraction.
x=-\frac{17}{12}y+\frac{680}{3}
Multiply \frac{5}{3} times -\frac{17y}{20}+136.
-\frac{17}{12}y+\frac{680}{3}+y=170
Substitute -\frac{17y}{12}+\frac{680}{3} for x in the other equation, x+y=170.
-\frac{5}{12}y+\frac{680}{3}=170
Add -\frac{17y}{12} to y.
-\frac{5}{12}y=-\frac{170}{3}
Subtract \frac{680}{3} from both sides of the equation.
y=136
Divide both sides of the equation by -\frac{5}{12}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=-\frac{17}{12}\times 136+\frac{680}{3}
Substitute 136 for y in x=-\frac{17}{12}y+\frac{680}{3}. Because the resulting equation contains only one variable, you can solve for x directly.
x=\frac{-578+680}{3}
Multiply -\frac{17}{12} times 136.
x=34
Add \frac{680}{3} to -\frac{578}{3} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=34,y=136
The system is now solved.
0.6x+0.85y=136,x+y=170
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}0.6&0.85\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}136\\170\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}0.6&0.85\\1&1\end{matrix}\right))\left(\begin{matrix}0.6&0.85\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}0.6&0.85\\1&1\end{matrix}\right))\left(\begin{matrix}136\\170\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}0.6&0.85\\1&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}0.6&0.85\\1&1\end{matrix}\right))\left(\begin{matrix}136\\170\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}0.6&0.85\\1&1\end{matrix}\right))\left(\begin{matrix}136\\170\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{0.6-0.85}&-\frac{0.85}{0.6-0.85}\\-\frac{1}{0.6-0.85}&\frac{0.6}{0.6-0.85}\end{matrix}\right)\left(\begin{matrix}136\\170\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-4&3.4\\4&-2.4\end{matrix}\right)\left(\begin{matrix}136\\170\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-4\times 136+3.4\times 170\\4\times 136-2.4\times 170\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}34\\136\end{matrix}\right)
Do the arithmetic.
x=34,y=136
Extract the matrix elements x and y.
0.6x+0.85y=136,x+y=170
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
0.6x+0.85y=136,0.6x+0.6y=0.6\times 170
To make \frac{3x}{5} and x equal, multiply all terms on each side of the first equation by 1 and all terms on each side of the second by 0.6.
0.6x+0.85y=136,0.6x+0.6y=102
Simplify.
0.6x-0.6x+0.85y-0.6y=136-102
Subtract 0.6x+0.6y=102 from 0.6x+0.85y=136 by subtracting like terms on each side of the equal sign.
0.85y-0.6y=136-102
Add \frac{3x}{5} to -\frac{3x}{5}. Terms \frac{3x}{5} and -\frac{3x}{5} cancel out, leaving an equation with only one variable that can be solved.
0.25y=136-102
Add \frac{17y}{20} to -\frac{3y}{5}.
0.25y=34
Add 136 to -102.
y=136
Multiply both sides by 4.
x+136=170
Substitute 136 for y in x+y=170. Because the resulting equation contains only one variable, you can solve for x directly.
x=34
Subtract 136 from both sides of the equation.
x=34,y=136
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}