Solve for x, y (complex solution)
\left\{\begin{matrix}x=\frac{-bk-\sqrt{4k-3k^{2}+2b-4bk-b^{2}}+k+2}{k^{2}+1}\text{, }y=\frac{-k\sqrt{4k-3k^{2}+2b-4bk-b^{2}}+k^{2}+b+2k}{k^{2}+1}\text{; }x=\frac{-bk+\sqrt{4k-3k^{2}+2b-4bk-b^{2}}+k+2}{k^{2}+1}\text{, }y=\frac{k\sqrt{4k-3k^{2}+2b-4bk-b^{2}}+k^{2}+b+2k}{k^{2}+1}\text{, }&k\neq -i\text{ and }k\neq i\\x=-\frac{b^{2}-2b+4}{2\left(bk-k-2\right)}\text{, }y=\frac{kb^{2}-4b-4k}{2\left(bk-k-2\right)}\text{, }&\left(b\neq 1-2i\text{ and }k=i\right)\text{ or }\left(b\neq 1+2i\text{ and }k=-i\right)\end{matrix}\right.
Solve for x, y
x=\frac{-bk-\sqrt{4k-3k^{2}+2b-4bk-b^{2}}+k+2}{k^{2}+1}\text{, }y=\frac{-k\sqrt{4k-3k^{2}+2b-4bk-b^{2}}+k^{2}+b+2k}{k^{2}+1}
x=\frac{-bk+\sqrt{4k-3k^{2}+2b-4bk-b^{2}}+k+2}{k^{2}+1}\text{, }y=\frac{k\sqrt{4k-3k^{2}+2b-4bk-b^{2}}+k^{2}+b+2k}{k^{2}+1}\text{, }k\geq \frac{-\sqrt{b^{2}-2b+4}-2b+2}{3}\text{ and }k\leq \frac{\sqrt{b^{2}-2b+4}-2b+2}{3}
Graph
Share
Copied to clipboard
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}