Solve for x, y
x=5
y = -\frac{139}{42} = -3\frac{13}{42} \approx -3.30952381
Graph
Share
Copied to clipboard
\frac{5+6}{6}=5\times 5+7y
Consider the first equation. Insert the known values of variables into the equation.
5+6=30\times 5+42y
Multiply both sides of the equation by 6.
11=30\times 5+42y
Add 5 and 6 to get 11.
11=150+42y
Multiply 30 and 5 to get 150.
150+42y=11
Swap sides so that all variable terms are on the left hand side.
42y=11-150
Subtract 150 from both sides.
42y=-139
Subtract 150 from 11 to get -139.
y=-\frac{139}{42}
Divide both sides by 42.
x=5 y=-\frac{139}{42}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}