Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

2x^{2}-13x+21=4
Use the distributive property to multiply x-3 by 2x-7 and combine like terms.
2x^{2}-13x+21-4=0
Subtract 4 from both sides.
2x^{2}-13x+17=0
Subtract 4 from 21 to get 17.
x=\frac{-\left(-13\right)±\sqrt{\left(-13\right)^{2}-4\times 2\times 17}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, -13 for b, and 17 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-13\right)±\sqrt{169-4\times 2\times 17}}{2\times 2}
Square -13.
x=\frac{-\left(-13\right)±\sqrt{169-8\times 17}}{2\times 2}
Multiply -4 times 2.
x=\frac{-\left(-13\right)±\sqrt{169-136}}{2\times 2}
Multiply -8 times 17.
x=\frac{-\left(-13\right)±\sqrt{33}}{2\times 2}
Add 169 to -136.
x=\frac{13±\sqrt{33}}{2\times 2}
The opposite of -13 is 13.
x=\frac{13±\sqrt{33}}{4}
Multiply 2 times 2.
x=\frac{\sqrt{33}+13}{4}
Now solve the equation x=\frac{13±\sqrt{33}}{4} when ± is plus. Add 13 to \sqrt{33}.
x=\frac{13-\sqrt{33}}{4}
Now solve the equation x=\frac{13±\sqrt{33}}{4} when ± is minus. Subtract \sqrt{33} from 13.
x=\frac{\sqrt{33}+13}{4} x=\frac{13-\sqrt{33}}{4}
The equation is now solved.
2x^{2}-13x+21=4
Use the distributive property to multiply x-3 by 2x-7 and combine like terms.
2x^{2}-13x=4-21
Subtract 21 from both sides.
2x^{2}-13x=-17
Subtract 21 from 4 to get -17.
\frac{2x^{2}-13x}{2}=-\frac{17}{2}
Divide both sides by 2.
x^{2}-\frac{13}{2}x=-\frac{17}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}-\frac{13}{2}x+\left(-\frac{13}{4}\right)^{2}=-\frac{17}{2}+\left(-\frac{13}{4}\right)^{2}
Divide -\frac{13}{2}, the coefficient of the x term, by 2 to get -\frac{13}{4}. Then add the square of -\frac{13}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{13}{2}x+\frac{169}{16}=-\frac{17}{2}+\frac{169}{16}
Square -\frac{13}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{13}{2}x+\frac{169}{16}=\frac{33}{16}
Add -\frac{17}{2} to \frac{169}{16} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{13}{4}\right)^{2}=\frac{33}{16}
Factor x^{2}-\frac{13}{2}x+\frac{169}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{13}{4}\right)^{2}}=\sqrt{\frac{33}{16}}
Take the square root of both sides of the equation.
x-\frac{13}{4}=\frac{\sqrt{33}}{4} x-\frac{13}{4}=-\frac{\sqrt{33}}{4}
Simplify.
x=\frac{\sqrt{33}+13}{4} x=\frac{13-\sqrt{33}}{4}
Add \frac{13}{4} to both sides of the equation.