Evaluate
\frac{4\left(x-2\right)\left(x-1\right)}{x-3}
Expand
\frac{4\left(x^{2}-3x+2\right)}{x-3}
Graph
Share
Copied to clipboard
\left(x-1\right)\left(1+\frac{x-1}{x-2-1}+\frac{x+1-1}{x-1-\left(-1\right)}\left(1+\frac{x-2+1}{x-2-1}\right)\right)
Add -2 and 1 to get -1.
\left(x-1\right)\left(1+\frac{x-1}{x-3}+\frac{x+1-1}{x-1-\left(-1\right)}\left(1+\frac{x-2+1}{x-2-1}\right)\right)
Subtract 1 from -2 to get -3.
\left(x-1\right)\left(1+\frac{x-1}{x-3}+\frac{x}{x-1-\left(-1\right)}\left(1+\frac{x-2+1}{x-2-1}\right)\right)
Subtract 1 from 1 to get 0.
\left(x-1\right)\left(1+\frac{x-1}{x-3}+\frac{x}{x-1+1}\left(1+\frac{x-2+1}{x-2-1}\right)\right)
The opposite of -1 is 1.
\left(x-1\right)\left(1+\frac{x-1}{x-3}+\frac{x}{x}\left(1+\frac{x-2+1}{x-2-1}\right)\right)
Add -1 and 1 to get 0.
\left(x-1\right)\left(1+\frac{x-1}{x-3}+1\left(1+\frac{x-2+1}{x-2-1}\right)\right)
Cancel out x in both numerator and denominator.
\left(x-1\right)\left(1+\frac{x-1}{x-3}+1\left(1+\frac{x-1}{x-2-1}\right)\right)
Add -2 and 1 to get -1.
\left(x-1\right)\left(1+\frac{x-1}{x-3}+1\left(1+\frac{x-1}{x-3}\right)\right)
Subtract 1 from -2 to get -3.
\left(x-1\right)\left(1+\frac{x-1}{x-3}+1\left(\frac{x-3}{x-3}+\frac{x-1}{x-3}\right)\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{x-3}{x-3}.
\left(x-1\right)\left(1+\frac{x-1}{x-3}+1\times \frac{x-3+x-1}{x-3}\right)
Since \frac{x-3}{x-3} and \frac{x-1}{x-3} have the same denominator, add them by adding their numerators.
\left(x-1\right)\left(1+\frac{x-1}{x-3}+1\times \frac{2x-4}{x-3}\right)
Combine like terms in x-3+x-1.
\left(x-1\right)\left(1+\frac{x-1}{x-3}+\frac{2x-4}{x-3}\right)
Express 1\times \frac{2x-4}{x-3} as a single fraction.
\left(x-1\right)\left(\frac{x-3}{x-3}+\frac{x-1}{x-3}+\frac{2x-4}{x-3}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{x-3}{x-3}.
\left(x-1\right)\left(\frac{x-3+x-1}{x-3}+\frac{2x-4}{x-3}\right)
Since \frac{x-3}{x-3} and \frac{x-1}{x-3} have the same denominator, add them by adding their numerators.
\left(x-1\right)\left(\frac{2x-4}{x-3}+\frac{2x-4}{x-3}\right)
Combine like terms in x-3+x-1.
\left(x-1\right)\times \frac{2x-4+2x-4}{x-3}
Since \frac{2x-4}{x-3} and \frac{2x-4}{x-3} have the same denominator, add them by adding their numerators.
\left(x-1\right)\times \frac{4x-8}{x-3}
Combine like terms in 2x-4+2x-4.
\frac{\left(x-1\right)\left(4x-8\right)}{x-3}
Express \left(x-1\right)\times \frac{4x-8}{x-3} as a single fraction.
\frac{4x^{2}-8x-4x+8}{x-3}
Apply the distributive property by multiplying each term of x-1 by each term of 4x-8.
\frac{4x^{2}-12x+8}{x-3}
Combine -8x and -4x to get -12x.
\left(x-1\right)\left(1+\frac{x-1}{x-2-1}+\frac{x+1-1}{x-1-\left(-1\right)}\left(1+\frac{x-2+1}{x-2-1}\right)\right)
Add -2 and 1 to get -1.
\left(x-1\right)\left(1+\frac{x-1}{x-3}+\frac{x+1-1}{x-1-\left(-1\right)}\left(1+\frac{x-2+1}{x-2-1}\right)\right)
Subtract 1 from -2 to get -3.
\left(x-1\right)\left(1+\frac{x-1}{x-3}+\frac{x}{x-1-\left(-1\right)}\left(1+\frac{x-2+1}{x-2-1}\right)\right)
Subtract 1 from 1 to get 0.
\left(x-1\right)\left(1+\frac{x-1}{x-3}+\frac{x}{x-1+1}\left(1+\frac{x-2+1}{x-2-1}\right)\right)
The opposite of -1 is 1.
\left(x-1\right)\left(1+\frac{x-1}{x-3}+\frac{x}{x}\left(1+\frac{x-2+1}{x-2-1}\right)\right)
Add -1 and 1 to get 0.
\left(x-1\right)\left(1+\frac{x-1}{x-3}+1\left(1+\frac{x-2+1}{x-2-1}\right)\right)
Cancel out x in both numerator and denominator.
\left(x-1\right)\left(1+\frac{x-1}{x-3}+1\left(1+\frac{x-1}{x-2-1}\right)\right)
Add -2 and 1 to get -1.
\left(x-1\right)\left(1+\frac{x-1}{x-3}+1\left(1+\frac{x-1}{x-3}\right)\right)
Subtract 1 from -2 to get -3.
\left(x-1\right)\left(1+\frac{x-1}{x-3}+1\left(\frac{x-3}{x-3}+\frac{x-1}{x-3}\right)\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{x-3}{x-3}.
\left(x-1\right)\left(1+\frac{x-1}{x-3}+1\times \frac{x-3+x-1}{x-3}\right)
Since \frac{x-3}{x-3} and \frac{x-1}{x-3} have the same denominator, add them by adding their numerators.
\left(x-1\right)\left(1+\frac{x-1}{x-3}+1\times \frac{2x-4}{x-3}\right)
Combine like terms in x-3+x-1.
\left(x-1\right)\left(1+\frac{x-1}{x-3}+\frac{2x-4}{x-3}\right)
Express 1\times \frac{2x-4}{x-3} as a single fraction.
\left(x-1\right)\left(\frac{x-3}{x-3}+\frac{x-1}{x-3}+\frac{2x-4}{x-3}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{x-3}{x-3}.
\left(x-1\right)\left(\frac{x-3+x-1}{x-3}+\frac{2x-4}{x-3}\right)
Since \frac{x-3}{x-3} and \frac{x-1}{x-3} have the same denominator, add them by adding their numerators.
\left(x-1\right)\left(\frac{2x-4}{x-3}+\frac{2x-4}{x-3}\right)
Combine like terms in x-3+x-1.
\left(x-1\right)\times \frac{2x-4+2x-4}{x-3}
Since \frac{2x-4}{x-3} and \frac{2x-4}{x-3} have the same denominator, add them by adding their numerators.
\left(x-1\right)\times \frac{4x-8}{x-3}
Combine like terms in 2x-4+2x-4.
\frac{\left(x-1\right)\left(4x-8\right)}{x-3}
Express \left(x-1\right)\times \frac{4x-8}{x-3} as a single fraction.
\frac{4x^{2}-8x-4x+8}{x-3}
Apply the distributive property by multiplying each term of x-1 by each term of 4x-8.
\frac{4x^{2}-12x+8}{x-3}
Combine -8x and -4x to get -12x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}