Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(x-1\right)\left(1+\frac{x-1}{x-2-1}+\frac{x+1-1}{x-1-\left(-1\right)}\left(1+\frac{x-2+1}{x-2-1}\right)\right)
Add -2 and 1 to get -1.
\left(x-1\right)\left(1+\frac{x-1}{x-3}+\frac{x+1-1}{x-1-\left(-1\right)}\left(1+\frac{x-2+1}{x-2-1}\right)\right)
Subtract 1 from -2 to get -3.
\left(x-1\right)\left(1+\frac{x-1}{x-3}+\frac{x}{x-1-\left(-1\right)}\left(1+\frac{x-2+1}{x-2-1}\right)\right)
Subtract 1 from 1 to get 0.
\left(x-1\right)\left(1+\frac{x-1}{x-3}+\frac{x}{x-1+1}\left(1+\frac{x-2+1}{x-2-1}\right)\right)
The opposite of -1 is 1.
\left(x-1\right)\left(1+\frac{x-1}{x-3}+\frac{x}{x}\left(1+\frac{x-2+1}{x-2-1}\right)\right)
Add -1 and 1 to get 0.
\left(x-1\right)\left(1+\frac{x-1}{x-3}+1\left(1+\frac{x-2+1}{x-2-1}\right)\right)
Cancel out x in both numerator and denominator.
\left(x-1\right)\left(1+\frac{x-1}{x-3}+1\left(1+\frac{x-1}{x-2-1}\right)\right)
Add -2 and 1 to get -1.
\left(x-1\right)\left(1+\frac{x-1}{x-3}+1\left(1+\frac{x-1}{x-3}\right)\right)
Subtract 1 from -2 to get -3.
\left(x-1\right)\left(1+\frac{x-1}{x-3}+1\left(\frac{x-3}{x-3}+\frac{x-1}{x-3}\right)\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{x-3}{x-3}.
\left(x-1\right)\left(1+\frac{x-1}{x-3}+1\times \frac{x-3+x-1}{x-3}\right)
Since \frac{x-3}{x-3} and \frac{x-1}{x-3} have the same denominator, add them by adding their numerators.
\left(x-1\right)\left(1+\frac{x-1}{x-3}+1\times \frac{2x-4}{x-3}\right)
Combine like terms in x-3+x-1.
\left(x-1\right)\left(1+\frac{x-1}{x-3}+\frac{2x-4}{x-3}\right)
Express 1\times \frac{2x-4}{x-3} as a single fraction.
\left(x-1\right)\left(\frac{x-3}{x-3}+\frac{x-1}{x-3}+\frac{2x-4}{x-3}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{x-3}{x-3}.
\left(x-1\right)\left(\frac{x-3+x-1}{x-3}+\frac{2x-4}{x-3}\right)
Since \frac{x-3}{x-3} and \frac{x-1}{x-3} have the same denominator, add them by adding their numerators.
\left(x-1\right)\left(\frac{2x-4}{x-3}+\frac{2x-4}{x-3}\right)
Combine like terms in x-3+x-1.
\left(x-1\right)\times \frac{2x-4+2x-4}{x-3}
Since \frac{2x-4}{x-3} and \frac{2x-4}{x-3} have the same denominator, add them by adding their numerators.
\left(x-1\right)\times \frac{4x-8}{x-3}
Combine like terms in 2x-4+2x-4.
\frac{\left(x-1\right)\left(4x-8\right)}{x-3}
Express \left(x-1\right)\times \frac{4x-8}{x-3} as a single fraction.
\frac{4x^{2}-8x-4x+8}{x-3}
Apply the distributive property by multiplying each term of x-1 by each term of 4x-8.
\frac{4x^{2}-12x+8}{x-3}
Combine -8x and -4x to get -12x.
\left(x-1\right)\left(1+\frac{x-1}{x-2-1}+\frac{x+1-1}{x-1-\left(-1\right)}\left(1+\frac{x-2+1}{x-2-1}\right)\right)
Add -2 and 1 to get -1.
\left(x-1\right)\left(1+\frac{x-1}{x-3}+\frac{x+1-1}{x-1-\left(-1\right)}\left(1+\frac{x-2+1}{x-2-1}\right)\right)
Subtract 1 from -2 to get -3.
\left(x-1\right)\left(1+\frac{x-1}{x-3}+\frac{x}{x-1-\left(-1\right)}\left(1+\frac{x-2+1}{x-2-1}\right)\right)
Subtract 1 from 1 to get 0.
\left(x-1\right)\left(1+\frac{x-1}{x-3}+\frac{x}{x-1+1}\left(1+\frac{x-2+1}{x-2-1}\right)\right)
The opposite of -1 is 1.
\left(x-1\right)\left(1+\frac{x-1}{x-3}+\frac{x}{x}\left(1+\frac{x-2+1}{x-2-1}\right)\right)
Add -1 and 1 to get 0.
\left(x-1\right)\left(1+\frac{x-1}{x-3}+1\left(1+\frac{x-2+1}{x-2-1}\right)\right)
Cancel out x in both numerator and denominator.
\left(x-1\right)\left(1+\frac{x-1}{x-3}+1\left(1+\frac{x-1}{x-2-1}\right)\right)
Add -2 and 1 to get -1.
\left(x-1\right)\left(1+\frac{x-1}{x-3}+1\left(1+\frac{x-1}{x-3}\right)\right)
Subtract 1 from -2 to get -3.
\left(x-1\right)\left(1+\frac{x-1}{x-3}+1\left(\frac{x-3}{x-3}+\frac{x-1}{x-3}\right)\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{x-3}{x-3}.
\left(x-1\right)\left(1+\frac{x-1}{x-3}+1\times \frac{x-3+x-1}{x-3}\right)
Since \frac{x-3}{x-3} and \frac{x-1}{x-3} have the same denominator, add them by adding their numerators.
\left(x-1\right)\left(1+\frac{x-1}{x-3}+1\times \frac{2x-4}{x-3}\right)
Combine like terms in x-3+x-1.
\left(x-1\right)\left(1+\frac{x-1}{x-3}+\frac{2x-4}{x-3}\right)
Express 1\times \frac{2x-4}{x-3} as a single fraction.
\left(x-1\right)\left(\frac{x-3}{x-3}+\frac{x-1}{x-3}+\frac{2x-4}{x-3}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{x-3}{x-3}.
\left(x-1\right)\left(\frac{x-3+x-1}{x-3}+\frac{2x-4}{x-3}\right)
Since \frac{x-3}{x-3} and \frac{x-1}{x-3} have the same denominator, add them by adding their numerators.
\left(x-1\right)\left(\frac{2x-4}{x-3}+\frac{2x-4}{x-3}\right)
Combine like terms in x-3+x-1.
\left(x-1\right)\times \frac{2x-4+2x-4}{x-3}
Since \frac{2x-4}{x-3} and \frac{2x-4}{x-3} have the same denominator, add them by adding their numerators.
\left(x-1\right)\times \frac{4x-8}{x-3}
Combine like terms in 2x-4+2x-4.
\frac{\left(x-1\right)\left(4x-8\right)}{x-3}
Express \left(x-1\right)\times \frac{4x-8}{x-3} as a single fraction.
\frac{4x^{2}-8x-4x+8}{x-3}
Apply the distributive property by multiplying each term of x-1 by each term of 4x-8.
\frac{4x^{2}-12x+8}{x-3}
Combine -8x and -4x to get -12x.