Solve for y
y = \frac{25}{13} = 1\frac{12}{13} \approx 1.923076923
Graph
Share
Copied to clipboard
2900-108y+y^{2}=\left(50+y\right)^{2}
Use the distributive property to multiply 58-y by 50-y and combine like terms.
2900-108y+y^{2}=2500+100y+y^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(50+y\right)^{2}.
2900-108y+y^{2}-100y=2500+y^{2}
Subtract 100y from both sides.
2900-208y+y^{2}=2500+y^{2}
Combine -108y and -100y to get -208y.
2900-208y+y^{2}-y^{2}=2500
Subtract y^{2} from both sides.
2900-208y=2500
Combine y^{2} and -y^{2} to get 0.
-208y=2500-2900
Subtract 2900 from both sides.
-208y=-400
Subtract 2900 from 2500 to get -400.
y=\frac{-400}{-208}
Divide both sides by -208.
y=\frac{25}{13}
Reduce the fraction \frac{-400}{-208} to lowest terms by extracting and canceling out -16.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}