Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(4x\right)^{2}-25=-10x+34
Consider \left(4x+5\right)\left(4x-5\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 5.
4^{2}x^{2}-25=-10x+34
Expand \left(4x\right)^{2}.
16x^{2}-25=-10x+34
Calculate 4 to the power of 2 and get 16.
16x^{2}-25+10x=34
Add 10x to both sides.
16x^{2}-25+10x-34=0
Subtract 34 from both sides.
16x^{2}-59+10x=0
Subtract 34 from -25 to get -59.
16x^{2}+10x-59=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-10±\sqrt{10^{2}-4\times 16\left(-59\right)}}{2\times 16}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 16 for a, 10 for b, and -59 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-10±\sqrt{100-4\times 16\left(-59\right)}}{2\times 16}
Square 10.
x=\frac{-10±\sqrt{100-64\left(-59\right)}}{2\times 16}
Multiply -4 times 16.
x=\frac{-10±\sqrt{100+3776}}{2\times 16}
Multiply -64 times -59.
x=\frac{-10±\sqrt{3876}}{2\times 16}
Add 100 to 3776.
x=\frac{-10±2\sqrt{969}}{2\times 16}
Take the square root of 3876.
x=\frac{-10±2\sqrt{969}}{32}
Multiply 2 times 16.
x=\frac{2\sqrt{969}-10}{32}
Now solve the equation x=\frac{-10±2\sqrt{969}}{32} when ± is plus. Add -10 to 2\sqrt{969}.
x=\frac{\sqrt{969}-5}{16}
Divide -10+2\sqrt{969} by 32.
x=\frac{-2\sqrt{969}-10}{32}
Now solve the equation x=\frac{-10±2\sqrt{969}}{32} when ± is minus. Subtract 2\sqrt{969} from -10.
x=\frac{-\sqrt{969}-5}{16}
Divide -10-2\sqrt{969} by 32.
x=\frac{\sqrt{969}-5}{16} x=\frac{-\sqrt{969}-5}{16}
The equation is now solved.
\left(4x\right)^{2}-25=-10x+34
Consider \left(4x+5\right)\left(4x-5\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 5.
4^{2}x^{2}-25=-10x+34
Expand \left(4x\right)^{2}.
16x^{2}-25=-10x+34
Calculate 4 to the power of 2 and get 16.
16x^{2}-25+10x=34
Add 10x to both sides.
16x^{2}+10x=34+25
Add 25 to both sides.
16x^{2}+10x=59
Add 34 and 25 to get 59.
\frac{16x^{2}+10x}{16}=\frac{59}{16}
Divide both sides by 16.
x^{2}+\frac{10}{16}x=\frac{59}{16}
Dividing by 16 undoes the multiplication by 16.
x^{2}+\frac{5}{8}x=\frac{59}{16}
Reduce the fraction \frac{10}{16} to lowest terms by extracting and canceling out 2.
x^{2}+\frac{5}{8}x+\left(\frac{5}{16}\right)^{2}=\frac{59}{16}+\left(\frac{5}{16}\right)^{2}
Divide \frac{5}{8}, the coefficient of the x term, by 2 to get \frac{5}{16}. Then add the square of \frac{5}{16} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{5}{8}x+\frac{25}{256}=\frac{59}{16}+\frac{25}{256}
Square \frac{5}{16} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{5}{8}x+\frac{25}{256}=\frac{969}{256}
Add \frac{59}{16} to \frac{25}{256} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{5}{16}\right)^{2}=\frac{969}{256}
Factor x^{2}+\frac{5}{8}x+\frac{25}{256}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{5}{16}\right)^{2}}=\sqrt{\frac{969}{256}}
Take the square root of both sides of the equation.
x+\frac{5}{16}=\frac{\sqrt{969}}{16} x+\frac{5}{16}=-\frac{\sqrt{969}}{16}
Simplify.
x=\frac{\sqrt{969}-5}{16} x=\frac{-\sqrt{969}-5}{16}
Subtract \frac{5}{16} from both sides of the equation.