Solve for x
x=35-\sqrt{1165}\approx 0.867903668
x=\sqrt{1165}+35\approx 69.132096332
Graph
Share
Copied to clipboard
1200-70x+x^{2}=1140
Use the distributive property to multiply 40-x by 30-x and combine like terms.
1200-70x+x^{2}-1140=0
Subtract 1140 from both sides.
60-70x+x^{2}=0
Subtract 1140 from 1200 to get 60.
x^{2}-70x+60=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-70\right)±\sqrt{\left(-70\right)^{2}-4\times 60}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -70 for b, and 60 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-70\right)±\sqrt{4900-4\times 60}}{2}
Square -70.
x=\frac{-\left(-70\right)±\sqrt{4900-240}}{2}
Multiply -4 times 60.
x=\frac{-\left(-70\right)±\sqrt{4660}}{2}
Add 4900 to -240.
x=\frac{-\left(-70\right)±2\sqrt{1165}}{2}
Take the square root of 4660.
x=\frac{70±2\sqrt{1165}}{2}
The opposite of -70 is 70.
x=\frac{2\sqrt{1165}+70}{2}
Now solve the equation x=\frac{70±2\sqrt{1165}}{2} when ± is plus. Add 70 to 2\sqrt{1165}.
x=\sqrt{1165}+35
Divide 70+2\sqrt{1165} by 2.
x=\frac{70-2\sqrt{1165}}{2}
Now solve the equation x=\frac{70±2\sqrt{1165}}{2} when ± is minus. Subtract 2\sqrt{1165} from 70.
x=35-\sqrt{1165}
Divide 70-2\sqrt{1165} by 2.
x=\sqrt{1165}+35 x=35-\sqrt{1165}
The equation is now solved.
1200-70x+x^{2}=1140
Use the distributive property to multiply 40-x by 30-x and combine like terms.
-70x+x^{2}=1140-1200
Subtract 1200 from both sides.
-70x+x^{2}=-60
Subtract 1200 from 1140 to get -60.
x^{2}-70x=-60
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}-70x+\left(-35\right)^{2}=-60+\left(-35\right)^{2}
Divide -70, the coefficient of the x term, by 2 to get -35. Then add the square of -35 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-70x+1225=-60+1225
Square -35.
x^{2}-70x+1225=1165
Add -60 to 1225.
\left(x-35\right)^{2}=1165
Factor x^{2}-70x+1225. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-35\right)^{2}}=\sqrt{1165}
Take the square root of both sides of the equation.
x-35=\sqrt{1165} x-35=-\sqrt{1165}
Simplify.
x=\sqrt{1165}+35 x=35-\sqrt{1165}
Add 35 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}