Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

1040-92x+2x^{2}=86x
Use the distributive property to multiply 40-2x by 26-x and combine like terms.
1040-92x+2x^{2}-86x=0
Subtract 86x from both sides.
1040-178x+2x^{2}=0
Combine -92x and -86x to get -178x.
2x^{2}-178x+1040=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-178\right)±\sqrt{\left(-178\right)^{2}-4\times 2\times 1040}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, -178 for b, and 1040 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-178\right)±\sqrt{31684-4\times 2\times 1040}}{2\times 2}
Square -178.
x=\frac{-\left(-178\right)±\sqrt{31684-8\times 1040}}{2\times 2}
Multiply -4 times 2.
x=\frac{-\left(-178\right)±\sqrt{31684-8320}}{2\times 2}
Multiply -8 times 1040.
x=\frac{-\left(-178\right)±\sqrt{23364}}{2\times 2}
Add 31684 to -8320.
x=\frac{-\left(-178\right)±6\sqrt{649}}{2\times 2}
Take the square root of 23364.
x=\frac{178±6\sqrt{649}}{2\times 2}
The opposite of -178 is 178.
x=\frac{178±6\sqrt{649}}{4}
Multiply 2 times 2.
x=\frac{6\sqrt{649}+178}{4}
Now solve the equation x=\frac{178±6\sqrt{649}}{4} when ± is plus. Add 178 to 6\sqrt{649}.
x=\frac{3\sqrt{649}+89}{2}
Divide 178+6\sqrt{649} by 4.
x=\frac{178-6\sqrt{649}}{4}
Now solve the equation x=\frac{178±6\sqrt{649}}{4} when ± is minus. Subtract 6\sqrt{649} from 178.
x=\frac{89-3\sqrt{649}}{2}
Divide 178-6\sqrt{649} by 4.
x=\frac{3\sqrt{649}+89}{2} x=\frac{89-3\sqrt{649}}{2}
The equation is now solved.
1040-92x+2x^{2}=86x
Use the distributive property to multiply 40-2x by 26-x and combine like terms.
1040-92x+2x^{2}-86x=0
Subtract 86x from both sides.
1040-178x+2x^{2}=0
Combine -92x and -86x to get -178x.
-178x+2x^{2}=-1040
Subtract 1040 from both sides. Anything subtracted from zero gives its negation.
2x^{2}-178x=-1040
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{2x^{2}-178x}{2}=-\frac{1040}{2}
Divide both sides by 2.
x^{2}+\left(-\frac{178}{2}\right)x=-\frac{1040}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}-89x=-\frac{1040}{2}
Divide -178 by 2.
x^{2}-89x=-520
Divide -1040 by 2.
x^{2}-89x+\left(-\frac{89}{2}\right)^{2}=-520+\left(-\frac{89}{2}\right)^{2}
Divide -89, the coefficient of the x term, by 2 to get -\frac{89}{2}. Then add the square of -\frac{89}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-89x+\frac{7921}{4}=-520+\frac{7921}{4}
Square -\frac{89}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-89x+\frac{7921}{4}=\frac{5841}{4}
Add -520 to \frac{7921}{4}.
\left(x-\frac{89}{2}\right)^{2}=\frac{5841}{4}
Factor x^{2}-89x+\frac{7921}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{89}{2}\right)^{2}}=\sqrt{\frac{5841}{4}}
Take the square root of both sides of the equation.
x-\frac{89}{2}=\frac{3\sqrt{649}}{2} x-\frac{89}{2}=-\frac{3\sqrt{649}}{2}
Simplify.
x=\frac{3\sqrt{649}+89}{2} x=\frac{89-3\sqrt{649}}{2}
Add \frac{89}{2} to both sides of the equation.