Solve for x
x = \frac{83}{9} = 9\frac{2}{9} \approx 9.222222222
Graph
Share
Copied to clipboard
8\left(350+\frac{5}{8}x\right)x=1200+5\left(80-x\right)\left(80-x\right)
Multiply both sides of the equation by 8.
\left(2800+8\times \frac{5}{8}x\right)x=1200+5\left(80-x\right)\left(80-x\right)
Use the distributive property to multiply 8 by 350+\frac{5}{8}x.
\left(2800+5x\right)x=1200+5\left(80-x\right)\left(80-x\right)
Cancel out 8 and 8.
2800x+5x^{2}=1200+5\left(80-x\right)\left(80-x\right)
Use the distributive property to multiply 2800+5x by x.
2800x+5x^{2}=1200+5\left(80-x\right)^{2}
Multiply 80-x and 80-x to get \left(80-x\right)^{2}.
2800x+5x^{2}=1200+5\left(6400-160x+x^{2}\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(80-x\right)^{2}.
2800x+5x^{2}=1200+32000-800x+5x^{2}
Use the distributive property to multiply 5 by 6400-160x+x^{2}.
2800x+5x^{2}=33200-800x+5x^{2}
Add 1200 and 32000 to get 33200.
2800x+5x^{2}+800x=33200+5x^{2}
Add 800x to both sides.
3600x+5x^{2}=33200+5x^{2}
Combine 2800x and 800x to get 3600x.
3600x+5x^{2}-5x^{2}=33200
Subtract 5x^{2} from both sides.
3600x=33200
Combine 5x^{2} and -5x^{2} to get 0.
x=\frac{33200}{3600}
Divide both sides by 3600.
x=\frac{83}{9}
Reduce the fraction \frac{33200}{3600} to lowest terms by extracting and canceling out 400.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}