Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

9-\left(\sqrt{5}\right)^{2}-\left(\sqrt{5}-1\right)^{2}
Consider \left(3+\sqrt{5}\right)\left(3-\sqrt{5}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 3.
9-5-\left(\sqrt{5}-1\right)^{2}
The square of \sqrt{5} is 5.
4-\left(\sqrt{5}-1\right)^{2}
Subtract 5 from 9 to get 4.
4-\left(\left(\sqrt{5}\right)^{2}-2\sqrt{5}+1\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\sqrt{5}-1\right)^{2}.
4-\left(5-2\sqrt{5}+1\right)
The square of \sqrt{5} is 5.
4-\left(6-2\sqrt{5}\right)
Add 5 and 1 to get 6.
4-6+2\sqrt{5}
To find the opposite of 6-2\sqrt{5}, find the opposite of each term.
-2+2\sqrt{5}
Subtract 6 from 4 to get -2.