\left( 2x-2 \right) dx+(3y+7)y=0
Solve for d (complex solution)
\left\{\begin{matrix}d=-\frac{y\left(3y+7\right)}{2x\left(x-1\right)}\text{, }&x\neq 1\text{ and }x\neq 0\\d\in \mathrm{C}\text{, }&\left(y=-\frac{7}{3}\text{ and }x=0\right)\text{ or }\left(y=-\frac{7}{3}\text{ and }x=1\right)\text{ or }\left(y=0\text{ and }x=0\right)\text{ or }\left(y=0\text{ and }x=1\right)\end{matrix}\right.
Solve for d
\left\{\begin{matrix}d=-\frac{y\left(3y+7\right)}{2x\left(x-1\right)}\text{, }&x\neq 1\text{ and }x\neq 0\\d\in \mathrm{R}\text{, }&\left(y=-\frac{7}{3}\text{ and }x=0\right)\text{ or }\left(y=-\frac{7}{3}\text{ and }x=1\right)\text{ or }\left(y=0\text{ and }x=0\right)\text{ or }\left(y=0\text{ and }x=1\right)\end{matrix}\right.
Solve for x (complex solution)
\left\{\begin{matrix}x=\frac{\sqrt{d\left(d-14y-6y^{2}\right)}+d}{2d}\text{; }x=\frac{-\sqrt{d\left(d-14y-6y^{2}\right)}+d}{2d}\text{, }&d\neq 0\\x\in \mathrm{C}\text{, }&\left(y=-\frac{7}{3}\text{ or }y=0\right)\text{ and }d=0\end{matrix}\right.
Solve for x
\left\{\begin{matrix}x=\frac{\sqrt{d\left(d-14y-6y^{2}\right)}+d}{2d}\text{; }x=\frac{-\sqrt{d\left(d-14y-6y^{2}\right)}+d}{2d}\text{, }&\left(y\neq 0\text{ and }y\neq -\frac{7}{3}\text{ and }d=6y^{2}+14y\right)\text{ or }\left(d\leq 6y^{2}+14y\text{ and }d<0\right)\text{ or }\left(d\geq 6y^{2}+14y\text{ and }d>0\right)\\x\in \mathrm{R}\text{, }&\left(y=-\frac{7}{3}\text{ or }y=0\right)\text{ and }d=0\end{matrix}\right.
Graph
Share
Copied to clipboard
\left(2xd-2d\right)x+\left(3y+7\right)y=0
Use the distributive property to multiply 2x-2 by d.
2dx^{2}-2dx+\left(3y+7\right)y=0
Use the distributive property to multiply 2xd-2d by x.
2dx^{2}-2dx+3y^{2}+7y=0
Use the distributive property to multiply 3y+7 by y.
2dx^{2}-2dx+7y=-3y^{2}
Subtract 3y^{2} from both sides. Anything subtracted from zero gives its negation.
2dx^{2}-2dx=-3y^{2}-7y
Subtract 7y from both sides.
\left(2x^{2}-2x\right)d=-3y^{2}-7y
Combine all terms containing d.
\frac{\left(2x^{2}-2x\right)d}{2x^{2}-2x}=-\frac{y\left(3y+7\right)}{2x^{2}-2x}
Divide both sides by 2x^{2}-2x.
d=-\frac{y\left(3y+7\right)}{2x^{2}-2x}
Dividing by 2x^{2}-2x undoes the multiplication by 2x^{2}-2x.
d=-\frac{y\left(3y+7\right)}{2x\left(x-1\right)}
Divide -y\left(7+3y\right) by 2x^{2}-2x.
\left(2xd-2d\right)x+\left(3y+7\right)y=0
Use the distributive property to multiply 2x-2 by d.
2dx^{2}-2dx+\left(3y+7\right)y=0
Use the distributive property to multiply 2xd-2d by x.
2dx^{2}-2dx+3y^{2}+7y=0
Use the distributive property to multiply 3y+7 by y.
2dx^{2}-2dx+7y=-3y^{2}
Subtract 3y^{2} from both sides. Anything subtracted from zero gives its negation.
2dx^{2}-2dx=-3y^{2}-7y
Subtract 7y from both sides.
\left(2x^{2}-2x\right)d=-3y^{2}-7y
Combine all terms containing d.
\frac{\left(2x^{2}-2x\right)d}{2x^{2}-2x}=-\frac{y\left(3y+7\right)}{2x^{2}-2x}
Divide both sides by 2x^{2}-2x.
d=-\frac{y\left(3y+7\right)}{2x^{2}-2x}
Dividing by 2x^{2}-2x undoes the multiplication by 2x^{2}-2x.
d=-\frac{y\left(3y+7\right)}{2x\left(x-1\right)}
Divide -y\left(7+3y\right) by 2x^{2}-2x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}