Solve for w
w=-12+3\sqrt{15}i\approx -12+11.618950039i
w=-3\sqrt{15}i-12\approx -12-11.618950039i
Share
Copied to clipboard
4w^{2}+96w+540+576=0
Use the distributive property to multiply 2w+18 by 2w+30 and combine like terms.
4w^{2}+96w+1116=0
Add 540 and 576 to get 1116.
w=\frac{-96±\sqrt{96^{2}-4\times 4\times 1116}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, 96 for b, and 1116 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
w=\frac{-96±\sqrt{9216-4\times 4\times 1116}}{2\times 4}
Square 96.
w=\frac{-96±\sqrt{9216-16\times 1116}}{2\times 4}
Multiply -4 times 4.
w=\frac{-96±\sqrt{9216-17856}}{2\times 4}
Multiply -16 times 1116.
w=\frac{-96±\sqrt{-8640}}{2\times 4}
Add 9216 to -17856.
w=\frac{-96±24\sqrt{15}i}{2\times 4}
Take the square root of -8640.
w=\frac{-96±24\sqrt{15}i}{8}
Multiply 2 times 4.
w=\frac{-96+24\sqrt{15}i}{8}
Now solve the equation w=\frac{-96±24\sqrt{15}i}{8} when ± is plus. Add -96 to 24i\sqrt{15}.
w=-12+3\sqrt{15}i
Divide -96+24i\sqrt{15} by 8.
w=\frac{-24\sqrt{15}i-96}{8}
Now solve the equation w=\frac{-96±24\sqrt{15}i}{8} when ± is minus. Subtract 24i\sqrt{15} from -96.
w=-3\sqrt{15}i-12
Divide -96-24i\sqrt{15} by 8.
w=-12+3\sqrt{15}i w=-3\sqrt{15}i-12
The equation is now solved.
4w^{2}+96w+540+576=0
Use the distributive property to multiply 2w+18 by 2w+30 and combine like terms.
4w^{2}+96w+1116=0
Add 540 and 576 to get 1116.
4w^{2}+96w=-1116
Subtract 1116 from both sides. Anything subtracted from zero gives its negation.
\frac{4w^{2}+96w}{4}=-\frac{1116}{4}
Divide both sides by 4.
w^{2}+\frac{96}{4}w=-\frac{1116}{4}
Dividing by 4 undoes the multiplication by 4.
w^{2}+24w=-\frac{1116}{4}
Divide 96 by 4.
w^{2}+24w=-279
Divide -1116 by 4.
w^{2}+24w+12^{2}=-279+12^{2}
Divide 24, the coefficient of the x term, by 2 to get 12. Then add the square of 12 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
w^{2}+24w+144=-279+144
Square 12.
w^{2}+24w+144=-135
Add -279 to 144.
\left(w+12\right)^{2}=-135
Factor w^{2}+24w+144. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(w+12\right)^{2}}=\sqrt{-135}
Take the square root of both sides of the equation.
w+12=3\sqrt{15}i w+12=-3\sqrt{15}i
Simplify.
w=-12+3\sqrt{15}i w=-3\sqrt{15}i-12
Subtract 12 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}