Solve for p (complex solution)
p=-\frac{\left(x-3\right)\left(x+1\right)}{2x^{2}-7x+7}
x\neq \frac{7+\sqrt{7}i}{4}\text{ and }x\neq \frac{-\sqrt{7}i+7}{4}
Solve for p
p=-\frac{\left(x-3\right)\left(x+1\right)}{2x^{2}-7x+7}
Solve for x (complex solution)
\left\{\begin{matrix}x=\frac{\sqrt{\left(4-p\right)\left(7p+4\right)}+7p+2}{2\left(2p+1\right)}\text{; }x=\frac{-\sqrt{\left(4-p\right)\left(7p+4\right)}+7p+2}{2\left(2p+1\right)}\text{, }&p\neq -\frac{1}{2}\\x=\frac{13}{3}\text{, }&p=-\frac{1}{2}\end{matrix}\right.
Solve for x
\left\{\begin{matrix}x=\frac{\sqrt{\left(4-p\right)\left(7p+4\right)}+7p+2}{2\left(2p+1\right)}\text{; }x=\frac{-\sqrt{\left(4-p\right)\left(7p+4\right)}+7p+2}{2\left(2p+1\right)}\text{, }&p\neq -\frac{1}{2}\text{ and }p\geq -\frac{4}{7}\text{ and }p\leq 4\\x=\frac{13}{3}\text{, }&p=-\frac{1}{2}\end{matrix}\right.
Graph
Share
Copied to clipboard
2px^{2}+x^{2}-\left(7p+2\right)x+7p-3=0
Use the distributive property to multiply 2p+1 by x^{2}.
2px^{2}+x^{2}-\left(7px+2x\right)+7p-3=0
Use the distributive property to multiply 7p+2 by x.
2px^{2}+x^{2}-7px-2x+7p-3=0
To find the opposite of 7px+2x, find the opposite of each term.
2px^{2}-7px-2x+7p-3=-x^{2}
Subtract x^{2} from both sides. Anything subtracted from zero gives its negation.
2px^{2}-7px+7p-3=-x^{2}+2x
Add 2x to both sides.
2px^{2}-7px+7p=-x^{2}+2x+3
Add 3 to both sides.
\left(2x^{2}-7x+7\right)p=-x^{2}+2x+3
Combine all terms containing p.
\left(2x^{2}-7x+7\right)p=3+2x-x^{2}
The equation is in standard form.
\frac{\left(2x^{2}-7x+7\right)p}{2x^{2}-7x+7}=-\frac{\left(x-3\right)\left(x+1\right)}{2x^{2}-7x+7}
Divide both sides by 2x^{2}-7x+7.
p=-\frac{\left(x-3\right)\left(x+1\right)}{2x^{2}-7x+7}
Dividing by 2x^{2}-7x+7 undoes the multiplication by 2x^{2}-7x+7.
2px^{2}+x^{2}-\left(7p+2\right)x+7p-3=0
Use the distributive property to multiply 2p+1 by x^{2}.
2px^{2}+x^{2}-\left(7px+2x\right)+7p-3=0
Use the distributive property to multiply 7p+2 by x.
2px^{2}+x^{2}-7px-2x+7p-3=0
To find the opposite of 7px+2x, find the opposite of each term.
2px^{2}-7px-2x+7p-3=-x^{2}
Subtract x^{2} from both sides. Anything subtracted from zero gives its negation.
2px^{2}-7px+7p-3=-x^{2}+2x
Add 2x to both sides.
2px^{2}-7px+7p=-x^{2}+2x+3
Add 3 to both sides.
\left(2x^{2}-7x+7\right)p=-x^{2}+2x+3
Combine all terms containing p.
\left(2x^{2}-7x+7\right)p=3+2x-x^{2}
The equation is in standard form.
\frac{\left(2x^{2}-7x+7\right)p}{2x^{2}-7x+7}=-\frac{\left(x-3\right)\left(x+1\right)}{2x^{2}-7x+7}
Divide both sides by 2x^{2}-7x+7.
p=-\frac{\left(x-3\right)\left(x+1\right)}{2x^{2}-7x+7}
Dividing by 2x^{2}-7x+7 undoes the multiplication by 2x^{2}-7x+7.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}