Solve for x
x=20
Graph
Share
Copied to clipboard
60000+700x-5x^{2}-100\left(300+5x\right)=32000
Use the distributive property to multiply 200-x by 300+5x and combine like terms.
60000+700x-5x^{2}-30000-500x=32000
Use the distributive property to multiply -100 by 300+5x.
30000+700x-5x^{2}-500x=32000
Subtract 30000 from 60000 to get 30000.
30000+200x-5x^{2}=32000
Combine 700x and -500x to get 200x.
30000+200x-5x^{2}-32000=0
Subtract 32000 from both sides.
-2000+200x-5x^{2}=0
Subtract 32000 from 30000 to get -2000.
-5x^{2}+200x-2000=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-200±\sqrt{200^{2}-4\left(-5\right)\left(-2000\right)}}{2\left(-5\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -5 for a, 200 for b, and -2000 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-200±\sqrt{40000-4\left(-5\right)\left(-2000\right)}}{2\left(-5\right)}
Square 200.
x=\frac{-200±\sqrt{40000+20\left(-2000\right)}}{2\left(-5\right)}
Multiply -4 times -5.
x=\frac{-200±\sqrt{40000-40000}}{2\left(-5\right)}
Multiply 20 times -2000.
x=\frac{-200±\sqrt{0}}{2\left(-5\right)}
Add 40000 to -40000.
x=-\frac{200}{2\left(-5\right)}
Take the square root of 0.
x=-\frac{200}{-10}
Multiply 2 times -5.
x=20
Divide -200 by -10.
60000+700x-5x^{2}-100\left(300+5x\right)=32000
Use the distributive property to multiply 200-x by 300+5x and combine like terms.
60000+700x-5x^{2}-30000-500x=32000
Use the distributive property to multiply -100 by 300+5x.
30000+700x-5x^{2}-500x=32000
Subtract 30000 from 60000 to get 30000.
30000+200x-5x^{2}=32000
Combine 700x and -500x to get 200x.
200x-5x^{2}=32000-30000
Subtract 30000 from both sides.
200x-5x^{2}=2000
Subtract 30000 from 32000 to get 2000.
-5x^{2}+200x=2000
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-5x^{2}+200x}{-5}=\frac{2000}{-5}
Divide both sides by -5.
x^{2}+\frac{200}{-5}x=\frac{2000}{-5}
Dividing by -5 undoes the multiplication by -5.
x^{2}-40x=\frac{2000}{-5}
Divide 200 by -5.
x^{2}-40x=-400
Divide 2000 by -5.
x^{2}-40x+\left(-20\right)^{2}=-400+\left(-20\right)^{2}
Divide -40, the coefficient of the x term, by 2 to get -20. Then add the square of -20 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-40x+400=-400+400
Square -20.
x^{2}-40x+400=0
Add -400 to 400.
\left(x-20\right)^{2}=0
Factor x^{2}-40x+400. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-20\right)^{2}}=\sqrt{0}
Take the square root of both sides of the equation.
x-20=0 x-20=0
Simplify.
x=20 x=20
Add 20 to both sides of the equation.
x=20
The equation is now solved. Solutions are the same.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}