Solve for m
m=\frac{2x^{2}-x+4}{x\left(x+3\right)}
x\neq -3\text{ and }x\neq 0
Solve for x (complex solution)
\left\{\begin{matrix}x=\frac{\sqrt{\left(m-1\right)\left(9m+31\right)}+3m+1}{2\left(2-m\right)}\text{; }x=\frac{-\sqrt{\left(m-1\right)\left(9m+31\right)}+3m+1}{2\left(2-m\right)}\text{, }&m\neq 2\\x=\frac{4}{7}\text{, }&m=2\end{matrix}\right.
Solve for x
\left\{\begin{matrix}x=\frac{\sqrt{\left(m-1\right)\left(9m+31\right)}+3m+1}{2\left(2-m\right)}\text{; }x=\frac{-\sqrt{\left(m-1\right)\left(9m+31\right)}+3m+1}{2\left(2-m\right)}\text{, }&\left(m\neq 2\text{ and }m\geq 1\right)\text{ or }m\leq -\frac{31}{9}\\x=\frac{4}{7}\text{, }&m=2\end{matrix}\right.
Graph
Share
Copied to clipboard
2x^{2}-mx^{2}-\left(3m+1\right)x+4=0
Use the distributive property to multiply 2-m by x^{2}.
2x^{2}-mx^{2}-\left(3mx+x\right)+4=0
Use the distributive property to multiply 3m+1 by x.
2x^{2}-mx^{2}-3mx-x+4=0
To find the opposite of 3mx+x, find the opposite of each term.
-mx^{2}-3mx-x+4=-2x^{2}
Subtract 2x^{2} from both sides. Anything subtracted from zero gives its negation.
-mx^{2}-3mx+4=-2x^{2}+x
Add x to both sides.
-mx^{2}-3mx=-2x^{2}+x-4
Subtract 4 from both sides.
\left(-x^{2}-3x\right)m=-2x^{2}+x-4
Combine all terms containing m.
\frac{\left(-x^{2}-3x\right)m}{-x^{2}-3x}=\frac{-2x^{2}+x-4}{-x^{2}-3x}
Divide both sides by -x^{2}-3x.
m=\frac{-2x^{2}+x-4}{-x^{2}-3x}
Dividing by -x^{2}-3x undoes the multiplication by -x^{2}-3x.
m=\frac{-2x^{2}+x-4}{-x\left(x+3\right)}
Divide -2x^{2}+x-4 by -x^{2}-3x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}