Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

2\left(16-2x\right)\left(12-2x\right)=16\left(12\times 2+1\right)
Multiply both sides of the equation by 2.
\left(32-4x\right)\left(12-2x\right)=16\left(12\times 2+1\right)
Use the distributive property to multiply 2 by 16-2x.
384-112x+8x^{2}=16\left(12\times 2+1\right)
Use the distributive property to multiply 32-4x by 12-2x and combine like terms.
384-112x+8x^{2}=16\left(24+1\right)
Multiply 12 and 2 to get 24.
384-112x+8x^{2}=16\times 25
Add 24 and 1 to get 25.
384-112x+8x^{2}=400
Multiply 16 and 25 to get 400.
384-112x+8x^{2}-400=0
Subtract 400 from both sides.
-16-112x+8x^{2}=0
Subtract 400 from 384 to get -16.
8x^{2}-112x-16=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-112\right)±\sqrt{\left(-112\right)^{2}-4\times 8\left(-16\right)}}{2\times 8}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 8 for a, -112 for b, and -16 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-112\right)±\sqrt{12544-4\times 8\left(-16\right)}}{2\times 8}
Square -112.
x=\frac{-\left(-112\right)±\sqrt{12544-32\left(-16\right)}}{2\times 8}
Multiply -4 times 8.
x=\frac{-\left(-112\right)±\sqrt{12544+512}}{2\times 8}
Multiply -32 times -16.
x=\frac{-\left(-112\right)±\sqrt{13056}}{2\times 8}
Add 12544 to 512.
x=\frac{-\left(-112\right)±16\sqrt{51}}{2\times 8}
Take the square root of 13056.
x=\frac{112±16\sqrt{51}}{2\times 8}
The opposite of -112 is 112.
x=\frac{112±16\sqrt{51}}{16}
Multiply 2 times 8.
x=\frac{16\sqrt{51}+112}{16}
Now solve the equation x=\frac{112±16\sqrt{51}}{16} when ± is plus. Add 112 to 16\sqrt{51}.
x=\sqrt{51}+7
Divide 112+16\sqrt{51} by 16.
x=\frac{112-16\sqrt{51}}{16}
Now solve the equation x=\frac{112±16\sqrt{51}}{16} when ± is minus. Subtract 16\sqrt{51} from 112.
x=7-\sqrt{51}
Divide 112-16\sqrt{51} by 16.
x=\sqrt{51}+7 x=7-\sqrt{51}
The equation is now solved.
2\left(16-2x\right)\left(12-2x\right)=16\left(12\times 2+1\right)
Multiply both sides of the equation by 2.
\left(32-4x\right)\left(12-2x\right)=16\left(12\times 2+1\right)
Use the distributive property to multiply 2 by 16-2x.
384-112x+8x^{2}=16\left(12\times 2+1\right)
Use the distributive property to multiply 32-4x by 12-2x and combine like terms.
384-112x+8x^{2}=16\left(24+1\right)
Multiply 12 and 2 to get 24.
384-112x+8x^{2}=16\times 25
Add 24 and 1 to get 25.
384-112x+8x^{2}=400
Multiply 16 and 25 to get 400.
-112x+8x^{2}=400-384
Subtract 384 from both sides.
-112x+8x^{2}=16
Subtract 384 from 400 to get 16.
8x^{2}-112x=16
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{8x^{2}-112x}{8}=\frac{16}{8}
Divide both sides by 8.
x^{2}+\left(-\frac{112}{8}\right)x=\frac{16}{8}
Dividing by 8 undoes the multiplication by 8.
x^{2}-14x=\frac{16}{8}
Divide -112 by 8.
x^{2}-14x=2
Divide 16 by 8.
x^{2}-14x+\left(-7\right)^{2}=2+\left(-7\right)^{2}
Divide -14, the coefficient of the x term, by 2 to get -7. Then add the square of -7 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-14x+49=2+49
Square -7.
x^{2}-14x+49=51
Add 2 to 49.
\left(x-7\right)^{2}=51
Factor x^{2}-14x+49. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-7\right)^{2}}=\sqrt{51}
Take the square root of both sides of the equation.
x-7=\sqrt{51} x-7=-\sqrt{51}
Simplify.
x=\sqrt{51}+7 x=7-\sqrt{51}
Add 7 to both sides of the equation.