Skip to main content
Calculate Determinant
Tick mark Image
Evaluate
Tick mark Image

Share

det(\left(\begin{matrix}1&-1&1\\2&-2&2\\-1&1&-1\end{matrix}\right))
Multiply \left(\left(\begin{matrix}1&1&-1\\2&1&-2\\1&0&1\end{matrix}\right)\right)^{-1} and \left(\begin{matrix}1&1&-1\\2&1&-2\\1&0&1\end{matrix}\right) to get 1.
\left(\begin{matrix}1&-1&1&1&-1\\2&-2&2&2&-2\\-1&1&-1&-1&1\end{matrix}\right)
Extend the original matrix by repeating the first two columns as the fourth and fifth columns.
-2\left(-1\right)-2\left(-1\right)+2=6
Starting at the upper left entry, multiply down along the diagonals, and add the resulting products.
-\left(-2\right)+2-2\left(-1\right)=6
Starting at the lower left entry, multiply up along the diagonals, and add the resulting products.
6-6
Subtract the sum of the upward diagonal products from the sum of the downward diagonal products.
0
Subtract 6 from 6.
det(\left(\begin{matrix}1&-1&1\\2&-2&2\\-1&1&-1\end{matrix}\right))
Multiply \left(\left(\begin{matrix}1&1&-1\\2&1&-2\\1&0&1\end{matrix}\right)\right)^{-1} and \left(\begin{matrix}1&1&-1\\2&1&-2\\1&0&1\end{matrix}\right) to get 1.
det(\left(\begin{matrix}-2&2\\1&-1\end{matrix}\right))-\left(-det(\left(\begin{matrix}2&2\\-1&-1\end{matrix}\right))\right)+det(\left(\begin{matrix}2&-2\\-1&1\end{matrix}\right))
To expand by minors, multiply each element of the first row by its minor, which is the determinant of the 2\times 2 matrix created by deleting the row and column containing that element, then multiply by the element's position sign.
-2\left(-1\right)-2-\left(-\left(2\left(-1\right)-\left(-2\right)\right)\right)+2-\left(-\left(-2\right)\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the determinant is ad-bc.
0
Simplify.