Skip to main content
Calculate Determinant
Tick mark Image
Evaluate
Tick mark Image

Share

det(\left(\begin{matrix}3&1&0\\1&3&2\\0&2&2\end{matrix}\right))
Find the determinant of the matrix using the method of diagonals.
\left(\begin{matrix}3&1&0&3&1\\1&3&2&1&3\\0&2&2&0&2\end{matrix}\right)
Extend the original matrix by repeating the first two columns as the fourth and fifth columns.
3\times 3\times 2=18
Starting at the upper left entry, multiply down along the diagonals, and add the resulting products.
2\times 2\times 3+2=14
Starting at the lower left entry, multiply up along the diagonals, and add the resulting products.
18-14
Subtract the sum of the upward diagonal products from the sum of the downward diagonal products.
4
Subtract 14 from 18.
det(\left(\begin{matrix}3&1&0\\1&3&2\\0&2&2\end{matrix}\right))
Find the determinant of the matrix using the method of expansion by minors (also known as expansion by cofactors).
3det(\left(\begin{matrix}3&2\\2&2\end{matrix}\right))-det(\left(\begin{matrix}1&2\\0&2\end{matrix}\right))
To expand by minors, multiply each element of the first row by its minor, which is the determinant of the 2\times 2 matrix created by deleting the row and column containing that element, then multiply by the element's position sign.
3\left(3\times 2-2\times 2\right)-2
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the determinant is ad-bc.
3\times 2-2
Simplify.
4
Add the terms to obtain the final result.