Evaluate
6-2\sqrt{15}\approx -1.745966692
Share
Copied to clipboard
\left(\sqrt{5}\right)^{2}-\sqrt{5}\sqrt{3}-\sqrt{5}\sqrt{2}-\sqrt{3}\sqrt{5}+\left(\sqrt{3}\right)^{2}+\sqrt{3}\sqrt{2}+\sqrt{2}\sqrt{5}-\sqrt{2}\sqrt{3}-\left(\sqrt{2}\right)^{2}
Apply the distributive property by multiplying each term of \sqrt{5}-\sqrt{3}+\sqrt{2} by each term of \sqrt{5}-\sqrt{3}-\sqrt{2}.
5-\sqrt{5}\sqrt{3}-\sqrt{5}\sqrt{2}-\sqrt{3}\sqrt{5}+\left(\sqrt{3}\right)^{2}+\sqrt{3}\sqrt{2}+\sqrt{2}\sqrt{5}-\sqrt{2}\sqrt{3}-\left(\sqrt{2}\right)^{2}
The square of \sqrt{5} is 5.
5-\sqrt{15}-\sqrt{5}\sqrt{2}-\sqrt{3}\sqrt{5}+\left(\sqrt{3}\right)^{2}+\sqrt{3}\sqrt{2}+\sqrt{2}\sqrt{5}-\sqrt{2}\sqrt{3}-\left(\sqrt{2}\right)^{2}
To multiply \sqrt{5} and \sqrt{3}, multiply the numbers under the square root.
5-\sqrt{15}-\sqrt{10}-\sqrt{3}\sqrt{5}+\left(\sqrt{3}\right)^{2}+\sqrt{3}\sqrt{2}+\sqrt{2}\sqrt{5}-\sqrt{2}\sqrt{3}-\left(\sqrt{2}\right)^{2}
To multiply \sqrt{5} and \sqrt{2}, multiply the numbers under the square root.
5-\sqrt{15}-\sqrt{10}-\sqrt{15}+\left(\sqrt{3}\right)^{2}+\sqrt{3}\sqrt{2}+\sqrt{2}\sqrt{5}-\sqrt{2}\sqrt{3}-\left(\sqrt{2}\right)^{2}
To multiply \sqrt{3} and \sqrt{5}, multiply the numbers under the square root.
5-2\sqrt{15}-\sqrt{10}+\left(\sqrt{3}\right)^{2}+\sqrt{3}\sqrt{2}+\sqrt{2}\sqrt{5}-\sqrt{2}\sqrt{3}-\left(\sqrt{2}\right)^{2}
Combine -\sqrt{15} and -\sqrt{15} to get -2\sqrt{15}.
5-2\sqrt{15}-\sqrt{10}+3+\sqrt{3}\sqrt{2}+\sqrt{2}\sqrt{5}-\sqrt{2}\sqrt{3}-\left(\sqrt{2}\right)^{2}
The square of \sqrt{3} is 3.
8-2\sqrt{15}-\sqrt{10}+\sqrt{3}\sqrt{2}+\sqrt{2}\sqrt{5}-\sqrt{2}\sqrt{3}-\left(\sqrt{2}\right)^{2}
Add 5 and 3 to get 8.
8-2\sqrt{15}-\sqrt{10}+\sqrt{6}+\sqrt{2}\sqrt{5}-\sqrt{2}\sqrt{3}-\left(\sqrt{2}\right)^{2}
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.
8-2\sqrt{15}-\sqrt{10}+\sqrt{6}+\sqrt{10}-\sqrt{2}\sqrt{3}-\left(\sqrt{2}\right)^{2}
To multiply \sqrt{2} and \sqrt{5}, multiply the numbers under the square root.
8-2\sqrt{15}+\sqrt{6}-\sqrt{2}\sqrt{3}-\left(\sqrt{2}\right)^{2}
Combine -\sqrt{10} and \sqrt{10} to get 0.
8-2\sqrt{15}+\sqrt{6}-\sqrt{6}-\left(\sqrt{2}\right)^{2}
To multiply \sqrt{2} and \sqrt{3}, multiply the numbers under the square root.
8-2\sqrt{15}-\left(\sqrt{2}\right)^{2}
Combine \sqrt{6} and -\sqrt{6} to get 0.
8-2\sqrt{15}-2
The square of \sqrt{2} is 2.
6-2\sqrt{15}
Subtract 2 from 8 to get 6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}