Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\left(\sqrt{5}\right)^{2}-4-\sqrt{12}+\left(-2\right)^{0}+\left(\frac{1}{3}\right)^{-1}
Consider \left(\sqrt{5}+2\right)\left(\sqrt{5}-2\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 2.
5-4-\sqrt{12}+\left(-2\right)^{0}+\left(\frac{1}{3}\right)^{-1}
The square of \sqrt{5} is 5.
1-\sqrt{12}+\left(-2\right)^{0}+\left(\frac{1}{3}\right)^{-1}
Subtract 4 from 5 to get 1.
1-2\sqrt{3}+\left(-2\right)^{0}+\left(\frac{1}{3}\right)^{-1}
Factor 12=2^{2}\times 3. Rewrite the square root of the product \sqrt{2^{2}\times 3} as the product of square roots \sqrt{2^{2}}\sqrt{3}. Take the square root of 2^{2}.
1-2\sqrt{3}+1+\left(\frac{1}{3}\right)^{-1}
Calculate -2 to the power of 0 and get 1.
2-2\sqrt{3}+\left(\frac{1}{3}\right)^{-1}
Add 1 and 1 to get 2.
2-2\sqrt{3}+3
Calculate \frac{1}{3} to the power of -1 and get 3.
5-2\sqrt{3}
Add 2 and 3 to get 5.