Evaluate
5-2\sqrt{3}\approx 1.535898385
Share
Copied to clipboard
\left(\sqrt{5}\right)^{2}-4-\sqrt{12}+\left(-2\right)^{0}+\left(\frac{1}{3}\right)^{-1}
Consider \left(\sqrt{5}+2\right)\left(\sqrt{5}-2\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 2.
5-4-\sqrt{12}+\left(-2\right)^{0}+\left(\frac{1}{3}\right)^{-1}
The square of \sqrt{5} is 5.
1-\sqrt{12}+\left(-2\right)^{0}+\left(\frac{1}{3}\right)^{-1}
Subtract 4 from 5 to get 1.
1-2\sqrt{3}+\left(-2\right)^{0}+\left(\frac{1}{3}\right)^{-1}
Factor 12=2^{2}\times 3. Rewrite the square root of the product \sqrt{2^{2}\times 3} as the product of square roots \sqrt{2^{2}}\sqrt{3}. Take the square root of 2^{2}.
1-2\sqrt{3}+1+\left(\frac{1}{3}\right)^{-1}
Calculate -2 to the power of 0 and get 1.
2-2\sqrt{3}+\left(\frac{1}{3}\right)^{-1}
Add 1 and 1 to get 2.
2-2\sqrt{3}+3
Calculate \frac{1}{3} to the power of -1 and get 3.
5-2\sqrt{3}
Add 2 and 3 to get 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}