Solve for λ
\lambda =\frac{\sqrt{481}+25}{2}\approx 23.4658561
\lambda =\frac{25-\sqrt{481}}{2}\approx 1.5341439
Quiz
Quadratic Equation
5 problems similar to:
\left( \lambda -8 \right) \left( \lambda -17 \right) = 100
Share
Copied to clipboard
\lambda ^{2}-25\lambda +136=100
Use the distributive property to multiply \lambda -8 by \lambda -17 and combine like terms.
\lambda ^{2}-25\lambda +136-100=0
Subtract 100 from both sides.
\lambda ^{2}-25\lambda +36=0
Subtract 100 from 136 to get 36.
\lambda =\frac{-\left(-25\right)±\sqrt{\left(-25\right)^{2}-4\times 36}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -25 for b, and 36 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
\lambda =\frac{-\left(-25\right)±\sqrt{625-4\times 36}}{2}
Square -25.
\lambda =\frac{-\left(-25\right)±\sqrt{625-144}}{2}
Multiply -4 times 36.
\lambda =\frac{-\left(-25\right)±\sqrt{481}}{2}
Add 625 to -144.
\lambda =\frac{25±\sqrt{481}}{2}
The opposite of -25 is 25.
\lambda =\frac{\sqrt{481}+25}{2}
Now solve the equation \lambda =\frac{25±\sqrt{481}}{2} when ± is plus. Add 25 to \sqrt{481}.
\lambda =\frac{25-\sqrt{481}}{2}
Now solve the equation \lambda =\frac{25±\sqrt{481}}{2} when ± is minus. Subtract \sqrt{481} from 25.
\lambda =\frac{\sqrt{481}+25}{2} \lambda =\frac{25-\sqrt{481}}{2}
The equation is now solved.
\lambda ^{2}-25\lambda +136=100
Use the distributive property to multiply \lambda -8 by \lambda -17 and combine like terms.
\lambda ^{2}-25\lambda =100-136
Subtract 136 from both sides.
\lambda ^{2}-25\lambda =-36
Subtract 136 from 100 to get -36.
\lambda ^{2}-25\lambda +\left(-\frac{25}{2}\right)^{2}=-36+\left(-\frac{25}{2}\right)^{2}
Divide -25, the coefficient of the x term, by 2 to get -\frac{25}{2}. Then add the square of -\frac{25}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
\lambda ^{2}-25\lambda +\frac{625}{4}=-36+\frac{625}{4}
Square -\frac{25}{2} by squaring both the numerator and the denominator of the fraction.
\lambda ^{2}-25\lambda +\frac{625}{4}=\frac{481}{4}
Add -36 to \frac{625}{4}.
\left(\lambda -\frac{25}{2}\right)^{2}=\frac{481}{4}
Factor \lambda ^{2}-25\lambda +\frac{625}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(\lambda -\frac{25}{2}\right)^{2}}=\sqrt{\frac{481}{4}}
Take the square root of both sides of the equation.
\lambda -\frac{25}{2}=\frac{\sqrt{481}}{2} \lambda -\frac{25}{2}=-\frac{\sqrt{481}}{2}
Simplify.
\lambda =\frac{\sqrt{481}+25}{2} \lambda =\frac{25-\sqrt{481}}{2}
Add \frac{25}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}