Skip to main content
Solve for λ
Tick mark Image

Similar Problems from Web Search

Share

\lambda ^{2}-25\lambda +136=100
Use the distributive property to multiply \lambda -8 by \lambda -17 and combine like terms.
\lambda ^{2}-25\lambda +136-100=0
Subtract 100 from both sides.
\lambda ^{2}-25\lambda +36=0
Subtract 100 from 136 to get 36.
\lambda =\frac{-\left(-25\right)±\sqrt{\left(-25\right)^{2}-4\times 36}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -25 for b, and 36 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
\lambda =\frac{-\left(-25\right)±\sqrt{625-4\times 36}}{2}
Square -25.
\lambda =\frac{-\left(-25\right)±\sqrt{625-144}}{2}
Multiply -4 times 36.
\lambda =\frac{-\left(-25\right)±\sqrt{481}}{2}
Add 625 to -144.
\lambda =\frac{25±\sqrt{481}}{2}
The opposite of -25 is 25.
\lambda =\frac{\sqrt{481}+25}{2}
Now solve the equation \lambda =\frac{25±\sqrt{481}}{2} when ± is plus. Add 25 to \sqrt{481}.
\lambda =\frac{25-\sqrt{481}}{2}
Now solve the equation \lambda =\frac{25±\sqrt{481}}{2} when ± is minus. Subtract \sqrt{481} from 25.
\lambda =\frac{\sqrt{481}+25}{2} \lambda =\frac{25-\sqrt{481}}{2}
The equation is now solved.
\lambda ^{2}-25\lambda +136=100
Use the distributive property to multiply \lambda -8 by \lambda -17 and combine like terms.
\lambda ^{2}-25\lambda =100-136
Subtract 136 from both sides.
\lambda ^{2}-25\lambda =-36
Subtract 136 from 100 to get -36.
\lambda ^{2}-25\lambda +\left(-\frac{25}{2}\right)^{2}=-36+\left(-\frac{25}{2}\right)^{2}
Divide -25, the coefficient of the x term, by 2 to get -\frac{25}{2}. Then add the square of -\frac{25}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
\lambda ^{2}-25\lambda +\frac{625}{4}=-36+\frac{625}{4}
Square -\frac{25}{2} by squaring both the numerator and the denominator of the fraction.
\lambda ^{2}-25\lambda +\frac{625}{4}=\frac{481}{4}
Add -36 to \frac{625}{4}.
\left(\lambda -\frac{25}{2}\right)^{2}=\frac{481}{4}
Factor \lambda ^{2}-25\lambda +\frac{625}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(\lambda -\frac{25}{2}\right)^{2}}=\sqrt{\frac{481}{4}}
Take the square root of both sides of the equation.
\lambda -\frac{25}{2}=\frac{\sqrt{481}}{2} \lambda -\frac{25}{2}=-\frac{\sqrt{481}}{2}
Simplify.
\lambda =\frac{\sqrt{481}+25}{2} \lambda =\frac{25-\sqrt{481}}{2}
Add \frac{25}{2} to both sides of the equation.