\left( \frac{ 2 }{ \frac{ 2- \sqrt{ 5 } }{ } } +1 \right) \left( \frac{ 2 }{ 2- \sqrt{ 5 } } +3 \right) \left( \frac{ 2 }{ 2- \sqrt{ 5 } } +5 \right) \left( \frac{ 2 }{ 2- \sqrt{ 5 } } +7 \right)
Evaluate
209
Factor
11\times 19
Share
Copied to clipboard
\left(\frac{2}{2-\sqrt{5}}+1\right)\left(\frac{2}{2-\sqrt{5}}+3\right)\left(\frac{2}{2-\sqrt{5}}+5\right)\left(\frac{2}{2-\sqrt{5}}+7\right)
Divide 2 by \frac{2-\sqrt{5}}{1} by multiplying 2 by the reciprocal of \frac{2-\sqrt{5}}{1}.
\left(\frac{2\left(2+\sqrt{5}\right)}{\left(2-\sqrt{5}\right)\left(2+\sqrt{5}\right)}+1\right)\left(\frac{2}{2-\sqrt{5}}+3\right)\left(\frac{2}{2-\sqrt{5}}+5\right)\left(\frac{2}{2-\sqrt{5}}+7\right)
Rationalize the denominator of \frac{2}{2-\sqrt{5}} by multiplying numerator and denominator by 2+\sqrt{5}.
\left(\frac{2\left(2+\sqrt{5}\right)}{2^{2}-\left(\sqrt{5}\right)^{2}}+1\right)\left(\frac{2}{2-\sqrt{5}}+3\right)\left(\frac{2}{2-\sqrt{5}}+5\right)\left(\frac{2}{2-\sqrt{5}}+7\right)
Consider \left(2-\sqrt{5}\right)\left(2+\sqrt{5}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\left(\frac{2\left(2+\sqrt{5}\right)}{4-5}+1\right)\left(\frac{2}{2-\sqrt{5}}+3\right)\left(\frac{2}{2-\sqrt{5}}+5\right)\left(\frac{2}{2-\sqrt{5}}+7\right)
Square 2. Square \sqrt{5}.
\left(\frac{2\left(2+\sqrt{5}\right)}{-1}+1\right)\left(\frac{2}{2-\sqrt{5}}+3\right)\left(\frac{2}{2-\sqrt{5}}+5\right)\left(\frac{2}{2-\sqrt{5}}+7\right)
Subtract 5 from 4 to get -1.
\left(-2\left(2+\sqrt{5}\right)+1\right)\left(\frac{2}{2-\sqrt{5}}+3\right)\left(\frac{2}{2-\sqrt{5}}+5\right)\left(\frac{2}{2-\sqrt{5}}+7\right)
Anything divided by -1 gives its opposite.
\left(-2\left(2+\sqrt{5}\right)+1\right)\left(\frac{2\left(2+\sqrt{5}\right)}{\left(2-\sqrt{5}\right)\left(2+\sqrt{5}\right)}+3\right)\left(\frac{2}{2-\sqrt{5}}+5\right)\left(\frac{2}{2-\sqrt{5}}+7\right)
Rationalize the denominator of \frac{2}{2-\sqrt{5}} by multiplying numerator and denominator by 2+\sqrt{5}.
\left(-2\left(2+\sqrt{5}\right)+1\right)\left(\frac{2\left(2+\sqrt{5}\right)}{2^{2}-\left(\sqrt{5}\right)^{2}}+3\right)\left(\frac{2}{2-\sqrt{5}}+5\right)\left(\frac{2}{2-\sqrt{5}}+7\right)
Consider \left(2-\sqrt{5}\right)\left(2+\sqrt{5}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\left(-2\left(2+\sqrt{5}\right)+1\right)\left(\frac{2\left(2+\sqrt{5}\right)}{4-5}+3\right)\left(\frac{2}{2-\sqrt{5}}+5\right)\left(\frac{2}{2-\sqrt{5}}+7\right)
Square 2. Square \sqrt{5}.
\left(-2\left(2+\sqrt{5}\right)+1\right)\left(\frac{2\left(2+\sqrt{5}\right)}{-1}+3\right)\left(\frac{2}{2-\sqrt{5}}+5\right)\left(\frac{2}{2-\sqrt{5}}+7\right)
Subtract 5 from 4 to get -1.
\left(-2\left(2+\sqrt{5}\right)+1\right)\left(-2\left(2+\sqrt{5}\right)+3\right)\left(\frac{2}{2-\sqrt{5}}+5\right)\left(\frac{2}{2-\sqrt{5}}+7\right)
Anything divided by -1 gives its opposite.
\left(-2\left(2+\sqrt{5}\right)+1\right)\left(-2\left(2+\sqrt{5}\right)+3\right)\left(\frac{2\left(2+\sqrt{5}\right)}{\left(2-\sqrt{5}\right)\left(2+\sqrt{5}\right)}+5\right)\left(\frac{2}{2-\sqrt{5}}+7\right)
Rationalize the denominator of \frac{2}{2-\sqrt{5}} by multiplying numerator and denominator by 2+\sqrt{5}.
\left(-2\left(2+\sqrt{5}\right)+1\right)\left(-2\left(2+\sqrt{5}\right)+3\right)\left(\frac{2\left(2+\sqrt{5}\right)}{2^{2}-\left(\sqrt{5}\right)^{2}}+5\right)\left(\frac{2}{2-\sqrt{5}}+7\right)
Consider \left(2-\sqrt{5}\right)\left(2+\sqrt{5}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\left(-2\left(2+\sqrt{5}\right)+1\right)\left(-2\left(2+\sqrt{5}\right)+3\right)\left(\frac{2\left(2+\sqrt{5}\right)}{4-5}+5\right)\left(\frac{2}{2-\sqrt{5}}+7\right)
Square 2. Square \sqrt{5}.
\left(-2\left(2+\sqrt{5}\right)+1\right)\left(-2\left(2+\sqrt{5}\right)+3\right)\left(\frac{2\left(2+\sqrt{5}\right)}{-1}+5\right)\left(\frac{2}{2-\sqrt{5}}+7\right)
Subtract 5 from 4 to get -1.
\left(-2\left(2+\sqrt{5}\right)+1\right)\left(-2\left(2+\sqrt{5}\right)+3\right)\left(-2\left(2+\sqrt{5}\right)+5\right)\left(\frac{2}{2-\sqrt{5}}+7\right)
Anything divided by -1 gives its opposite.
\left(-2\left(2+\sqrt{5}\right)+1\right)\left(-2\left(2+\sqrt{5}\right)+3\right)\left(-2\left(2+\sqrt{5}\right)+5\right)\left(\frac{2\left(2+\sqrt{5}\right)}{\left(2-\sqrt{5}\right)\left(2+\sqrt{5}\right)}+7\right)
Rationalize the denominator of \frac{2}{2-\sqrt{5}} by multiplying numerator and denominator by 2+\sqrt{5}.
\left(-2\left(2+\sqrt{5}\right)+1\right)\left(-2\left(2+\sqrt{5}\right)+3\right)\left(-2\left(2+\sqrt{5}\right)+5\right)\left(\frac{2\left(2+\sqrt{5}\right)}{2^{2}-\left(\sqrt{5}\right)^{2}}+7\right)
Consider \left(2-\sqrt{5}\right)\left(2+\sqrt{5}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\left(-2\left(2+\sqrt{5}\right)+1\right)\left(-2\left(2+\sqrt{5}\right)+3\right)\left(-2\left(2+\sqrt{5}\right)+5\right)\left(\frac{2\left(2+\sqrt{5}\right)}{4-5}+7\right)
Square 2. Square \sqrt{5}.
\left(-2\left(2+\sqrt{5}\right)+1\right)\left(-2\left(2+\sqrt{5}\right)+3\right)\left(-2\left(2+\sqrt{5}\right)+5\right)\left(\frac{2\left(2+\sqrt{5}\right)}{-1}+7\right)
Subtract 5 from 4 to get -1.
\left(-2\left(2+\sqrt{5}\right)+1\right)\left(-2\left(2+\sqrt{5}\right)+3\right)\left(-2\left(2+\sqrt{5}\right)+5\right)\left(-2\left(2+\sqrt{5}\right)+7\right)
Anything divided by -1 gives its opposite.
\left(-4-2\sqrt{5}+1\right)\left(-2\left(2+\sqrt{5}\right)+3\right)\left(-2\left(2+\sqrt{5}\right)+5\right)\left(-2\left(2+\sqrt{5}\right)+7\right)
Use the distributive property to multiply -2 by 2+\sqrt{5}.
\left(-3-2\sqrt{5}\right)\left(-2\left(2+\sqrt{5}\right)+3\right)\left(-2\left(2+\sqrt{5}\right)+5\right)\left(-2\left(2+\sqrt{5}\right)+7\right)
Add -4 and 1 to get -3.
\left(-3-2\sqrt{5}\right)\left(-4-2\sqrt{5}+3\right)\left(-2\left(2+\sqrt{5}\right)+5\right)\left(-2\left(2+\sqrt{5}\right)+7\right)
Use the distributive property to multiply -2 by 2+\sqrt{5}.
\left(-3-2\sqrt{5}\right)\left(-1-2\sqrt{5}\right)\left(-2\left(2+\sqrt{5}\right)+5\right)\left(-2\left(2+\sqrt{5}\right)+7\right)
Add -4 and 3 to get -1.
\left(-3-2\sqrt{5}\right)\left(-1-2\sqrt{5}\right)\left(-4-2\sqrt{5}+5\right)\left(-2\left(2+\sqrt{5}\right)+7\right)
Use the distributive property to multiply -2 by 2+\sqrt{5}.
\left(-3-2\sqrt{5}\right)\left(-1-2\sqrt{5}\right)\left(1-2\sqrt{5}\right)\left(-2\left(2+\sqrt{5}\right)+7\right)
Add -4 and 5 to get 1.
\left(-3-2\sqrt{5}\right)\left(-1-2\sqrt{5}\right)\left(1-2\sqrt{5}\right)\left(-4-2\sqrt{5}+7\right)
Use the distributive property to multiply -2 by 2+\sqrt{5}.
\left(-3-2\sqrt{5}\right)\left(-1-2\sqrt{5}\right)\left(1-2\sqrt{5}\right)\left(3-2\sqrt{5}\right)
Add -4 and 7 to get 3.
\left(3+6\sqrt{5}+2\sqrt{5}+4\left(\sqrt{5}\right)^{2}\right)\left(1-2\sqrt{5}\right)\left(3-2\sqrt{5}\right)
Apply the distributive property by multiplying each term of -3-2\sqrt{5} by each term of -1-2\sqrt{5}.
\left(3+8\sqrt{5}+4\left(\sqrt{5}\right)^{2}\right)\left(1-2\sqrt{5}\right)\left(3-2\sqrt{5}\right)
Combine 6\sqrt{5} and 2\sqrt{5} to get 8\sqrt{5}.
\left(3+8\sqrt{5}+4\times 5\right)\left(1-2\sqrt{5}\right)\left(3-2\sqrt{5}\right)
The square of \sqrt{5} is 5.
\left(3+8\sqrt{5}+20\right)\left(1-2\sqrt{5}\right)\left(3-2\sqrt{5}\right)
Multiply 4 and 5 to get 20.
\left(23+8\sqrt{5}\right)\left(1-2\sqrt{5}\right)\left(3-2\sqrt{5}\right)
Add 3 and 20 to get 23.
\left(23-46\sqrt{5}+8\sqrt{5}-16\left(\sqrt{5}\right)^{2}\right)\left(3-2\sqrt{5}\right)
Apply the distributive property by multiplying each term of 23+8\sqrt{5} by each term of 1-2\sqrt{5}.
\left(23-38\sqrt{5}-16\left(\sqrt{5}\right)^{2}\right)\left(3-2\sqrt{5}\right)
Combine -46\sqrt{5} and 8\sqrt{5} to get -38\sqrt{5}.
\left(23-38\sqrt{5}-16\times 5\right)\left(3-2\sqrt{5}\right)
The square of \sqrt{5} is 5.
\left(23-38\sqrt{5}-80\right)\left(3-2\sqrt{5}\right)
Multiply -16 and 5 to get -80.
\left(-57-38\sqrt{5}\right)\left(3-2\sqrt{5}\right)
Subtract 80 from 23 to get -57.
-171+114\sqrt{5}-114\sqrt{5}+76\left(\sqrt{5}\right)^{2}
Apply the distributive property by multiplying each term of -57-38\sqrt{5} by each term of 3-2\sqrt{5}.
-171+76\left(\sqrt{5}\right)^{2}
Combine 114\sqrt{5} and -114\sqrt{5} to get 0.
-171+76\times 5
The square of \sqrt{5} is 5.
-171+380
Multiply 76 and 5 to get 380.
209
Add -171 and 380 to get 209.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}