Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\left(\frac{a-2}{\left(a-2\right)\left(a+2\right)}+\frac{a+2}{\left(a-2\right)\left(a+2\right)}\right)\times \frac{a^{2}-4}{2a}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a+2 and a-2 is \left(a-2\right)\left(a+2\right). Multiply \frac{1}{a+2} times \frac{a-2}{a-2}. Multiply \frac{1}{a-2} times \frac{a+2}{a+2}.
\frac{a-2+a+2}{\left(a-2\right)\left(a+2\right)}\times \frac{a^{2}-4}{2a}
Since \frac{a-2}{\left(a-2\right)\left(a+2\right)} and \frac{a+2}{\left(a-2\right)\left(a+2\right)} have the same denominator, add them by adding their numerators.
\frac{2a}{\left(a-2\right)\left(a+2\right)}\times \frac{a^{2}-4}{2a}
Combine like terms in a-2+a+2.
\frac{2a\left(a^{2}-4\right)}{\left(a-2\right)\left(a+2\right)\times 2a}
Multiply \frac{2a}{\left(a-2\right)\left(a+2\right)} times \frac{a^{2}-4}{2a} by multiplying numerator times numerator and denominator times denominator.
\frac{a^{2}-4}{\left(a-2\right)\left(a+2\right)}
Cancel out 2a in both numerator and denominator.
\frac{\left(a-2\right)\left(a+2\right)}{\left(a-2\right)\left(a+2\right)}
Factor the expressions that are not already factored.
1
Cancel out \left(a-2\right)\left(a+2\right) in both numerator and denominator.