Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(\frac{1}{2}x\right)^{2}-4-\left(-\frac{1}{4}x^{2}\right)
Consider \left(\frac{1}{2}x-2\right)\left(\frac{1}{2}x+2\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 2.
\left(\frac{1}{2}\right)^{2}x^{2}-4-\left(-\frac{1}{4}x^{2}\right)
Expand \left(\frac{1}{2}x\right)^{2}.
\frac{1}{4}x^{2}-4-\left(-\frac{1}{4}x^{2}\right)
Calculate \frac{1}{2} to the power of 2 and get \frac{1}{4}.
\frac{1}{4}x^{2}-4+\frac{1}{4}x^{2}
The opposite of -\frac{1}{4}x^{2} is \frac{1}{4}x^{2}.
\frac{1}{2}x^{2}-4
Combine \frac{1}{4}x^{2} and \frac{1}{4}x^{2} to get \frac{1}{2}x^{2}.
\left(\frac{1}{2}x\right)^{2}-4-\left(-\frac{1}{4}x^{2}\right)
Consider \left(\frac{1}{2}x-2\right)\left(\frac{1}{2}x+2\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 2.
\left(\frac{1}{2}\right)^{2}x^{2}-4-\left(-\frac{1}{4}x^{2}\right)
Expand \left(\frac{1}{2}x\right)^{2}.
\frac{1}{4}x^{2}-4-\left(-\frac{1}{4}x^{2}\right)
Calculate \frac{1}{2} to the power of 2 and get \frac{1}{4}.
\frac{1}{4}x^{2}-4+\frac{1}{4}x^{2}
The opposite of -\frac{1}{4}x^{2} is \frac{1}{4}x^{2}.
\frac{1}{2}x^{2}-4
Combine \frac{1}{4}x^{2} and \frac{1}{4}x^{2} to get \frac{1}{2}x^{2}.