Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\left(\frac{1}{2}x\right)^{2}-\left(\frac{1}{3}y\right)^{2}-\frac{8}{9}y^{2}+\frac{3}{4}x^{2}+\left(2x-y\right)\left(-2x-y\right)
Consider \left(\frac{1}{2}x-\frac{1}{3}y\right)\left(\frac{1}{2}x+\frac{1}{3}y\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\left(\frac{1}{2}\right)^{2}x^{2}-\left(\frac{1}{3}y\right)^{2}-\frac{8}{9}y^{2}+\frac{3}{4}x^{2}+\left(2x-y\right)\left(-2x-y\right)
Expand \left(\frac{1}{2}x\right)^{2}.
\frac{1}{4}x^{2}-\left(\frac{1}{3}y\right)^{2}-\frac{8}{9}y^{2}+\frac{3}{4}x^{2}+\left(2x-y\right)\left(-2x-y\right)
Calculate \frac{1}{2} to the power of 2 and get \frac{1}{4}.
\frac{1}{4}x^{2}-\left(\frac{1}{3}\right)^{2}y^{2}-\frac{8}{9}y^{2}+\frac{3}{4}x^{2}+\left(2x-y\right)\left(-2x-y\right)
Expand \left(\frac{1}{3}y\right)^{2}.
\frac{1}{4}x^{2}-\frac{1}{9}y^{2}-\frac{8}{9}y^{2}+\frac{3}{4}x^{2}+\left(2x-y\right)\left(-2x-y\right)
Calculate \frac{1}{3} to the power of 2 and get \frac{1}{9}.
\frac{1}{4}x^{2}-y^{2}+\frac{3}{4}x^{2}+\left(2x-y\right)\left(-2x-y\right)
Combine -\frac{1}{9}y^{2} and -\frac{8}{9}y^{2} to get -y^{2}.
x^{2}-y^{2}+\left(2x-y\right)\left(-2x-y\right)
Combine \frac{1}{4}x^{2} and \frac{3}{4}x^{2} to get x^{2}.
x^{2}-y^{2}-4x^{2}+y^{2}
Use the distributive property to multiply 2x-y by -2x-y and combine like terms.
-3x^{2}-y^{2}+y^{2}
Combine x^{2} and -4x^{2} to get -3x^{2}.
-3x^{2}
Combine -y^{2} and y^{2} to get 0.
\left(\frac{1}{2}x\right)^{2}-\left(\frac{1}{3}y\right)^{2}-\frac{8}{9}y^{2}+\frac{3}{4}x^{2}+\left(2x-y\right)\left(-2x-y\right)
Consider \left(\frac{1}{2}x-\frac{1}{3}y\right)\left(\frac{1}{2}x+\frac{1}{3}y\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\left(\frac{1}{2}\right)^{2}x^{2}-\left(\frac{1}{3}y\right)^{2}-\frac{8}{9}y^{2}+\frac{3}{4}x^{2}+\left(2x-y\right)\left(-2x-y\right)
Expand \left(\frac{1}{2}x\right)^{2}.
\frac{1}{4}x^{2}-\left(\frac{1}{3}y\right)^{2}-\frac{8}{9}y^{2}+\frac{3}{4}x^{2}+\left(2x-y\right)\left(-2x-y\right)
Calculate \frac{1}{2} to the power of 2 and get \frac{1}{4}.
\frac{1}{4}x^{2}-\left(\frac{1}{3}\right)^{2}y^{2}-\frac{8}{9}y^{2}+\frac{3}{4}x^{2}+\left(2x-y\right)\left(-2x-y\right)
Expand \left(\frac{1}{3}y\right)^{2}.
\frac{1}{4}x^{2}-\frac{1}{9}y^{2}-\frac{8}{9}y^{2}+\frac{3}{4}x^{2}+\left(2x-y\right)\left(-2x-y\right)
Calculate \frac{1}{3} to the power of 2 and get \frac{1}{9}.
\frac{1}{4}x^{2}-y^{2}+\frac{3}{4}x^{2}+\left(2x-y\right)\left(-2x-y\right)
Combine -\frac{1}{9}y^{2} and -\frac{8}{9}y^{2} to get -y^{2}.
x^{2}-y^{2}+\left(2x-y\right)\left(-2x-y\right)
Combine \frac{1}{4}x^{2} and \frac{3}{4}x^{2} to get x^{2}.
x^{2}-y^{2}-4x^{2}+y^{2}
Use the distributive property to multiply 2x-y by -2x-y and combine like terms.
-3x^{2}-y^{2}+y^{2}
Combine x^{2} and -4x^{2} to get -3x^{2}.
-3x^{2}
Combine -y^{2} and y^{2} to get 0.