Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

det(\left(\begin{matrix}2&-1&4\\4&1&16\\8&-1&48\end{matrix}\right))
Find the determinant of the matrix using the method of diagonals.
\left(\begin{matrix}2&-1&4&2&-1\\4&1&16&4&1\\8&-1&48&8&-1\end{matrix}\right)
Extend the original matrix by repeating the first two columns as the fourth and fifth columns.
2\times 48-16\times 8+4\times 4\left(-1\right)=-48
Starting at the upper left entry, multiply down along the diagonals, and add the resulting products.
8\times 4-16\times 2+48\times 4\left(-1\right)=-192
Starting at the lower left entry, multiply up along the diagonals, and add the resulting products.
-48-\left(-192\right)
Subtract the sum of the upward diagonal products from the sum of the downward diagonal products.
144
Subtract -192 from -48.
det(\left(\begin{matrix}2&-1&4\\4&1&16\\8&-1&48\end{matrix}\right))
Find the determinant of the matrix using the method of expansion by minors (also known as expansion by cofactors).
2det(\left(\begin{matrix}1&16\\-1&48\end{matrix}\right))-\left(-det(\left(\begin{matrix}4&16\\8&48\end{matrix}\right))\right)+4det(\left(\begin{matrix}4&1\\8&-1\end{matrix}\right))
To expand by minors, multiply each element of the first row by its minor, which is the determinant of the 2\times 2 matrix created by deleting the row and column containing that element, then multiply by the element's position sign.
2\left(48-\left(-16\right)\right)-\left(-\left(4\times 48-8\times 16\right)\right)+4\left(4\left(-1\right)-8\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the determinant is ad-bc.
2\times 64-\left(-64\right)+4\left(-12\right)
Simplify.
144
Add the terms to obtain the final result.