Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

det(\left(\begin{matrix}1&3&0\\-1&2&4\\8&5&3\end{matrix}\right))
Find the determinant of the matrix using the method of diagonals.
\left(\begin{matrix}1&3&0&1&3\\-1&2&4&-1&2\\8&5&3&8&5\end{matrix}\right)
Extend the original matrix by repeating the first two columns as the fourth and fifth columns.
2\times 3+3\times 4\times 8=102
Starting at the upper left entry, multiply down along the diagonals, and add the resulting products.
5\times 4+3\left(-1\right)\times 3=11
Starting at the lower left entry, multiply up along the diagonals, and add the resulting products.
102-11
Subtract the sum of the upward diagonal products from the sum of the downward diagonal products.
91
Subtract 11 from 102.
det(\left(\begin{matrix}1&3&0\\-1&2&4\\8&5&3\end{matrix}\right))
Find the determinant of the matrix using the method of expansion by minors (also known as expansion by cofactors).
det(\left(\begin{matrix}2&4\\5&3\end{matrix}\right))-3det(\left(\begin{matrix}-1&4\\8&3\end{matrix}\right))
To expand by minors, multiply each element of the first row by its minor, which is the determinant of the 2\times 2 matrix created by deleting the row and column containing that element, then multiply by the element's position sign.
2\times 3-5\times 4-3\left(-3-8\times 4\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the determinant is ad-bc.
-14-3\left(-35\right)
Simplify.
91
Add the terms to obtain the final result.