Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

det(\left(\begin{matrix}4&2&1\\1&3&5\\6&2&1\end{matrix}\right))
Find the determinant of the matrix using the method of diagonals.
\left(\begin{matrix}4&2&1&4&2\\1&3&5&1&3\\6&2&1&6&2\end{matrix}\right)
Extend the original matrix by repeating the first two columns as the fourth and fifth columns.
4\times 3+2\times 5\times 6+2=74
Starting at the upper left entry, multiply down along the diagonals, and add the resulting products.
6\times 3+2\times 5\times 4+2=60
Starting at the lower left entry, multiply up along the diagonals, and add the resulting products.
74-60
Subtract the sum of the upward diagonal products from the sum of the downward diagonal products.
14
Subtract 60 from 74.
det(\left(\begin{matrix}4&2&1\\1&3&5\\6&2&1\end{matrix}\right))
Find the determinant of the matrix using the method of expansion by minors (also known as expansion by cofactors).
4det(\left(\begin{matrix}3&5\\2&1\end{matrix}\right))-2det(\left(\begin{matrix}1&5\\6&1\end{matrix}\right))+det(\left(\begin{matrix}1&3\\6&2\end{matrix}\right))
To expand by minors, multiply each element of the first row by its minor, which is the determinant of the 2\times 2 matrix created by deleting the row and column containing that element, then multiply by the element's position sign.
4\left(3-2\times 5\right)-2\left(1-6\times 5\right)+2-6\times 3
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the determinant is ad-bc.
4\left(-7\right)-2\left(-29\right)-16
Simplify.
14
Add the terms to obtain the final result.