Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

det(\left(\begin{matrix}3&4&5\\2&4&6\\1&3&1\end{matrix}\right))
Find the determinant of the matrix using the method of diagonals.
\left(\begin{matrix}3&4&5&3&4\\2&4&6&2&4\\1&3&1&1&3\end{matrix}\right)
Extend the original matrix by repeating the first two columns as the fourth and fifth columns.
3\times 4+4\times 6+5\times 2\times 3=66
Starting at the upper left entry, multiply down along the diagonals, and add the resulting products.
4\times 5+3\times 6\times 3+2\times 4=82
Starting at the lower left entry, multiply up along the diagonals, and add the resulting products.
66-82
Subtract the sum of the upward diagonal products from the sum of the downward diagonal products.
-16
Subtract 82 from 66.
det(\left(\begin{matrix}3&4&5\\2&4&6\\1&3&1\end{matrix}\right))
Find the determinant of the matrix using the method of expansion by minors (also known as expansion by cofactors).
3det(\left(\begin{matrix}4&6\\3&1\end{matrix}\right))-4det(\left(\begin{matrix}2&6\\1&1\end{matrix}\right))+5det(\left(\begin{matrix}2&4\\1&3\end{matrix}\right))
To expand by minors, multiply each element of the first row by its minor, which is the determinant of the 2\times 2 matrix created by deleting the row and column containing that element, then multiply by the element's position sign.
3\left(4-3\times 6\right)-4\left(2-6\right)+5\left(2\times 3-4\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the determinant is ad-bc.
3\left(-14\right)-4\left(-4\right)+5\times 2
Simplify.
-16
Add the terms to obtain the final result.