Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

det(\left(\begin{matrix}3&1&2\\4&3&5\\6&7&8\end{matrix}\right))
Find the determinant of the matrix using the method of diagonals.
\left(\begin{matrix}3&1&2&3&1\\4&3&5&4&3\\6&7&8&6&7\end{matrix}\right)
Extend the original matrix by repeating the first two columns as the fourth and fifth columns.
3\times 3\times 8+5\times 6+2\times 4\times 7=158
Starting at the upper left entry, multiply down along the diagonals, and add the resulting products.
6\times 3\times 2+7\times 5\times 3+8\times 4=173
Starting at the lower left entry, multiply up along the diagonals, and add the resulting products.
158-173
Subtract the sum of the upward diagonal products from the sum of the downward diagonal products.
-15
Subtract 173 from 158.
det(\left(\begin{matrix}3&1&2\\4&3&5\\6&7&8\end{matrix}\right))
Find the determinant of the matrix using the method of expansion by minors (also known as expansion by cofactors).
3det(\left(\begin{matrix}3&5\\7&8\end{matrix}\right))-det(\left(\begin{matrix}4&5\\6&8\end{matrix}\right))+2det(\left(\begin{matrix}4&3\\6&7\end{matrix}\right))
To expand by minors, multiply each element of the first row by its minor, which is the determinant of the 2\times 2 matrix created by deleting the row and column containing that element, then multiply by the element's position sign.
3\left(3\times 8-7\times 5\right)-\left(4\times 8-6\times 5\right)+2\left(4\times 7-6\times 3\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the determinant is ad-bc.
3\left(-11\right)-2+2\times 10
Simplify.
-15
Add the terms to obtain the final result.