\left| \begin{array} { l l l } { 103 } & { 100 } & { 204 } \\ { 199 } & { 200 } & { 395 } \\ { 301 } & { 300 } & { 600 } \end{array} \right| =
Evaluate
2000
Factor
2^{4}\times 5^{3}
Share
Copied to clipboard
det(\left(\begin{matrix}103&100&204\\199&200&395\\301&300&600\end{matrix}\right))
Find the determinant of the matrix using the method of diagonals.
\left(\begin{matrix}103&100&204&103&100\\199&200&395&199&200\\301&300&600&301&300\end{matrix}\right)
Extend the original matrix by repeating the first two columns as the fourth and fifth columns.
103\times 200\times 600+100\times 395\times 301+204\times 199\times 300=36428300
Starting at the upper left entry, multiply down along the diagonals, and add the resulting products.
301\times 200\times 204+300\times 395\times 103+600\times 199\times 100=36426300
Starting at the lower left entry, multiply up along the diagonals, and add the resulting products.
36428300-36426300
Subtract the sum of the upward diagonal products from the sum of the downward diagonal products.
2000
Subtract 36426300 from 36428300.
det(\left(\begin{matrix}103&100&204\\199&200&395\\301&300&600\end{matrix}\right))
Find the determinant of the matrix using the method of expansion by minors (also known as expansion by cofactors).
103det(\left(\begin{matrix}200&395\\300&600\end{matrix}\right))-100det(\left(\begin{matrix}199&395\\301&600\end{matrix}\right))+204det(\left(\begin{matrix}199&200\\301&300\end{matrix}\right))
To expand by minors, multiply each element of the first row by its minor, which is the determinant of the 2\times 2 matrix created by deleting the row and column containing that element, then multiply by the element's position sign.
103\left(200\times 600-300\times 395\right)-100\left(199\times 600-301\times 395\right)+204\left(199\times 300-301\times 200\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the determinant is ad-bc.
103\times 1500-100\times 505+204\left(-500\right)
Simplify.
2000
Add the terms to obtain the final result.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}