Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

det(\left(\begin{matrix}103&100&204\\199&200&395\\301&300&600\end{matrix}\right))
Find the determinant of the matrix using the method of diagonals.
\left(\begin{matrix}103&100&204&103&100\\199&200&395&199&200\\301&300&600&301&300\end{matrix}\right)
Extend the original matrix by repeating the first two columns as the fourth and fifth columns.
103\times 200\times 600+100\times 395\times 301+204\times 199\times 300=36428300
Starting at the upper left entry, multiply down along the diagonals, and add the resulting products.
301\times 200\times 204+300\times 395\times 103+600\times 199\times 100=36426300
Starting at the lower left entry, multiply up along the diagonals, and add the resulting products.
36428300-36426300
Subtract the sum of the upward diagonal products from the sum of the downward diagonal products.
2000
Subtract 36426300 from 36428300.
det(\left(\begin{matrix}103&100&204\\199&200&395\\301&300&600\end{matrix}\right))
Find the determinant of the matrix using the method of expansion by minors (also known as expansion by cofactors).
103det(\left(\begin{matrix}200&395\\300&600\end{matrix}\right))-100det(\left(\begin{matrix}199&395\\301&600\end{matrix}\right))+204det(\left(\begin{matrix}199&200\\301&300\end{matrix}\right))
To expand by minors, multiply each element of the first row by its minor, which is the determinant of the 2\times 2 matrix created by deleting the row and column containing that element, then multiply by the element's position sign.
103\left(200\times 600-300\times 395\right)-100\left(199\times 600-301\times 395\right)+204\left(199\times 300-301\times 200\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the determinant is ad-bc.
103\times 1500-100\times 505+204\left(-500\right)
Simplify.
2000
Add the terms to obtain the final result.