Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

det(\left(\begin{matrix}1&2&3\\2&3&4\\4&3&5\end{matrix}\right))
Find the determinant of the matrix using the method of diagonals.
\left(\begin{matrix}1&2&3&1&2\\2&3&4&2&3\\4&3&5&4&3\end{matrix}\right)
Extend the original matrix by repeating the first two columns as the fourth and fifth columns.
3\times 5+2\times 4\times 4+3\times 2\times 3=65
Starting at the upper left entry, multiply down along the diagonals, and add the resulting products.
4\times 3\times 3+3\times 4+5\times 2\times 2=68
Starting at the lower left entry, multiply up along the diagonals, and add the resulting products.
65-68
Subtract the sum of the upward diagonal products from the sum of the downward diagonal products.
-3
Subtract 68 from 65.
det(\left(\begin{matrix}1&2&3\\2&3&4\\4&3&5\end{matrix}\right))
Find the determinant of the matrix using the method of expansion by minors (also known as expansion by cofactors).
det(\left(\begin{matrix}3&4\\3&5\end{matrix}\right))-2det(\left(\begin{matrix}2&4\\4&5\end{matrix}\right))+3det(\left(\begin{matrix}2&3\\4&3\end{matrix}\right))
To expand by minors, multiply each element of the first row by its minor, which is the determinant of the 2\times 2 matrix created by deleting the row and column containing that element, then multiply by the element's position sign.
3\times 5-3\times 4-2\left(2\times 5-4\times 4\right)+3\left(2\times 3-4\times 3\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the determinant is ad-bc.
3-2\left(-6\right)+3\left(-6\right)
Simplify.
-3
Add the terms to obtain the final result.