Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

det(\left(\begin{matrix}4&1&4\\2&5&3\\-4&2&2\end{matrix}\right))
Find the determinant of the matrix using the method of diagonals.
\left(\begin{matrix}4&1&4&4&1\\2&5&3&2&5\\-4&2&2&-4&2\end{matrix}\right)
Extend the original matrix by repeating the first two columns as the fourth and fifth columns.
4\times 5\times 2+3\left(-4\right)+4\times 2\times 2=44
Starting at the upper left entry, multiply down along the diagonals, and add the resulting products.
-4\times 5\times 4+2\times 3\times 4+2\times 2=-52
Starting at the lower left entry, multiply up along the diagonals, and add the resulting products.
44-\left(-52\right)
Subtract the sum of the upward diagonal products from the sum of the downward diagonal products.
96
Subtract -52 from 44.
det(\left(\begin{matrix}4&1&4\\2&5&3\\-4&2&2\end{matrix}\right))
Find the determinant of the matrix using the method of expansion by minors (also known as expansion by cofactors).
4det(\left(\begin{matrix}5&3\\2&2\end{matrix}\right))-det(\left(\begin{matrix}2&3\\-4&2\end{matrix}\right))+4det(\left(\begin{matrix}2&5\\-4&2\end{matrix}\right))
To expand by minors, multiply each element of the first row by its minor, which is the determinant of the 2\times 2 matrix created by deleting the row and column containing that element, then multiply by the element's position sign.
4\left(5\times 2-2\times 3\right)-\left(2\times 2-\left(-4\times 3\right)\right)+4\left(2\times 2-\left(-4\times 5\right)\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the determinant is ad-bc.
4\times 4-16+4\times 24
Simplify.
96
Add the terms to obtain the final result.