Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

det(\left(\begin{matrix}2&3&5\\400&600&100\\48&47&18\end{matrix}\right))
Find the determinant of the matrix using the method of diagonals.
\left(\begin{matrix}2&3&5&2&3\\400&600&100&400&600\\48&47&18&48&47\end{matrix}\right)
Extend the original matrix by repeating the first two columns as the fourth and fifth columns.
2\times 600\times 18+3\times 100\times 48+5\times 400\times 47=130000
Starting at the upper left entry, multiply down along the diagonals, and add the resulting products.
48\times 600\times 5+47\times 100\times 2+18\times 400\times 3=175000
Starting at the lower left entry, multiply up along the diagonals, and add the resulting products.
130000-175000
Subtract the sum of the upward diagonal products from the sum of the downward diagonal products.
-45000
Subtract 175000 from 130000.
det(\left(\begin{matrix}2&3&5\\400&600&100\\48&47&18\end{matrix}\right))
Find the determinant of the matrix using the method of expansion by minors (also known as expansion by cofactors).
2det(\left(\begin{matrix}600&100\\47&18\end{matrix}\right))-3det(\left(\begin{matrix}400&100\\48&18\end{matrix}\right))+5det(\left(\begin{matrix}400&600\\48&47\end{matrix}\right))
To expand by minors, multiply each element of the first row by its minor, which is the determinant of the 2\times 2 matrix created by deleting the row and column containing that element, then multiply by the element's position sign.
2\left(600\times 18-47\times 100\right)-3\left(400\times 18-48\times 100\right)+5\left(400\times 47-48\times 600\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the determinant is ad-bc.
2\times 6100-3\times 2400+5\left(-10000\right)
Simplify.
-45000
Add the terms to obtain the final result.