\left| \begin{array} { c c c } { 2 } & { - 1 } & { 1 } \\ { 1 } & { 2 } & { - 3 } \\ { 3 } & { \lambda } & { 5 } \end{array} \right|
Evaluate
7\left(\lambda +4\right)
Integrate w.r.t. λ
\frac{7\lambda ^{2}}{2}+28\lambda +С
Share
Copied to clipboard
det(\left(\begin{matrix}2&-1&1\\1&2&-3\\3&\lambda &5\end{matrix}\right))
Find the determinant of the matrix using the method of diagonals.
\left(\begin{matrix}2&-1&1&2&-1\\1&2&-3&1&2\\3&\lambda &5&3&\lambda \end{matrix}\right)
Extend the original matrix by repeating the first two columns as the fourth and fifth columns.
2\times 2\times 5-\left(-3\times 3\right)+\lambda =\lambda +29
Starting at the upper left entry, multiply down along the diagonals, and add the resulting products.
3\times 2+\lambda \left(-3\right)\times 2+5\left(-1\right)=1-6\lambda
Starting at the lower left entry, multiply up along the diagonals, and add the resulting products.
\lambda +29-\left(1-6\lambda \right)
Subtract the sum of the upward diagonal products from the sum of the downward diagonal products.
7\lambda +28
Subtract 1-6\lambda from 29+\lambda .
det(\left(\begin{matrix}2&-1&1\\1&2&-3\\3&\lambda &5\end{matrix}\right))
Find the determinant of the matrix using the method of expansion by minors (also known as expansion by cofactors).
2det(\left(\begin{matrix}2&-3\\\lambda &5\end{matrix}\right))-\left(-det(\left(\begin{matrix}1&-3\\3&5\end{matrix}\right))\right)+det(\left(\begin{matrix}1&2\\3&\lambda \end{matrix}\right))
To expand by minors, multiply each element of the first row by its minor, which is the determinant of the 2\times 2 matrix created by deleting the row and column containing that element, then multiply by the element's position sign.
2\left(2\times 5-\lambda \left(-3\right)\right)-\left(-\left(5-3\left(-3\right)\right)\right)+\lambda -3\times 2
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the determinant is ad-bc.
2\left(3\lambda +10\right)-\left(-14\right)+\lambda -6
Simplify.
7\lambda +28
Add the terms to obtain the final result.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}