\left| \begin{array} { c c c } { - 2 } & { 3 } & { 4 } \\ { 8 } & { - 12 } & { 20 } \\ { 12 } & { 18 } & { - 30 } \end{array} \right|
Evaluate
2592
Factor
2^{5}\times 3^{4}
Share
Copied to clipboard
det(\left(\begin{matrix}-2&3&4\\8&-12&20\\12&18&-30\end{matrix}\right))
Find the determinant of the matrix using the method of diagonals.
\left(\begin{matrix}-2&3&4&-2&3\\8&-12&20&8&-12\\12&18&-30&12&18\end{matrix}\right)
Extend the original matrix by repeating the first two columns as the fourth and fifth columns.
-2\left(-12\right)\left(-30\right)+3\times 20\times 12+4\times 8\times 18=576
Starting at the upper left entry, multiply down along the diagonals, and add the resulting products.
12\left(-12\right)\times 4+18\times 20\left(-2\right)-30\times 8\times 3=-2016
Starting at the lower left entry, multiply up along the diagonals, and add the resulting products.
576-\left(-2016\right)
Subtract the sum of the upward diagonal products from the sum of the downward diagonal products.
2592
Subtract -2016 from 576.
det(\left(\begin{matrix}-2&3&4\\8&-12&20\\12&18&-30\end{matrix}\right))
Find the determinant of the matrix using the method of expansion by minors (also known as expansion by cofactors).
-2det(\left(\begin{matrix}-12&20\\18&-30\end{matrix}\right))-3det(\left(\begin{matrix}8&20\\12&-30\end{matrix}\right))+4det(\left(\begin{matrix}8&-12\\12&18\end{matrix}\right))
To expand by minors, multiply each element of the first row by its minor, which is the determinant of the 2\times 2 matrix created by deleting the row and column containing that element, then multiply by the element's position sign.
-2\left(-12\left(-30\right)-18\times 20\right)-3\left(8\left(-30\right)-12\times 20\right)+4\left(8\times 18-12\left(-12\right)\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the determinant is ad-bc.
-3\left(-480\right)+4\times 288
Simplify.
2592
Add the terms to obtain the final result.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}