Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

det(\left(\begin{matrix}-2&-2&2\\-7&-10&-12\\0&-3&-9\end{matrix}\right))
Find the determinant of the matrix using the method of diagonals.
\left(\begin{matrix}-2&-2&2&-2&-2\\-7&-10&-12&-7&-10\\0&-3&-9&0&-3\end{matrix}\right)
Extend the original matrix by repeating the first two columns as the fourth and fifth columns.
-2\left(-10\right)\left(-9\right)+2\left(-7\right)\left(-3\right)=-138
Starting at the upper left entry, multiply down along the diagonals, and add the resulting products.
-3\left(-12\right)\left(-2\right)-9\left(-7\right)\left(-2\right)=-198
Starting at the lower left entry, multiply up along the diagonals, and add the resulting products.
-138-\left(-198\right)
Subtract the sum of the upward diagonal products from the sum of the downward diagonal products.
60
Subtract -198 from -138.
det(\left(\begin{matrix}-2&-2&2\\-7&-10&-12\\0&-3&-9\end{matrix}\right))
Find the determinant of the matrix using the method of expansion by minors (also known as expansion by cofactors).
-2det(\left(\begin{matrix}-10&-12\\-3&-9\end{matrix}\right))-\left(-2det(\left(\begin{matrix}-7&-12\\0&-9\end{matrix}\right))\right)+2det(\left(\begin{matrix}-7&-10\\0&-3\end{matrix}\right))
To expand by minors, multiply each element of the first row by its minor, which is the determinant of the 2\times 2 matrix created by deleting the row and column containing that element, then multiply by the element's position sign.
-2\left(-10\left(-9\right)-\left(-3\left(-12\right)\right)\right)-\left(-2\left(-7\right)\left(-9\right)\right)+2\left(-7\right)\left(-3\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the determinant is ad-bc.
-2\times 54-\left(-2\times 63\right)+2\times 21
Simplify.
60
Add the terms to obtain the final result.