\left\{ \begin{array}{l}{ x + y = - 1 }\\{ 6 y = 24 }\\{ 4 x + 2 y - 4 z = - 36 }\end{array} \right.
Solve for x, y, z
x=-5
y=4
z=6
Share
Copied to clipboard
y=\frac{24}{6}
Consider the second equation. Divide both sides by 6.
y=4
Divide 24 by 6 to get 4.
x+4=-1
Consider the first equation. Insert the known values of variables into the equation.
x=-1-4
Subtract 4 from both sides.
x=-5
Subtract 4 from -1 to get -5.
4\left(-5\right)+2\times 4-4z=-36
Consider the third equation. Insert the known values of variables into the equation.
-20+8-4z=-36
Do the multiplications.
-12-4z=-36
Add -20 and 8 to get -12.
-4z=-36+12
Add 12 to both sides.
-4z=-24
Add -36 and 12 to get -24.
z=\frac{-24}{-4}
Divide both sides by -4.
z=6
Divide -24 by -4 to get 6.
x=-5 y=4 z=6
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}