\left\{ \begin{array}{l}{ x + y + 5 z = 15 }\\{ y + 3 z = 14 }\\{ 2 y = 1 }\end{array} \right.
Solve for x, y, z
x=-8
y=\frac{1}{2}=0.5
z = \frac{9}{2} = 4\frac{1}{2} = 4.5
Share
Copied to clipboard
y=\frac{1}{2}
Consider the third equation. Divide both sides by 2.
\frac{1}{2}+3z=14
Consider the second equation. Insert the known values of variables into the equation.
3z=14-\frac{1}{2}
Subtract \frac{1}{2} from both sides.
3z=\frac{27}{2}
Subtract \frac{1}{2} from 14 to get \frac{27}{2}.
z=\frac{\frac{27}{2}}{3}
Divide both sides by 3.
z=\frac{27}{2\times 3}
Express \frac{\frac{27}{2}}{3} as a single fraction.
z=\frac{27}{6}
Multiply 2 and 3 to get 6.
z=\frac{9}{2}
Reduce the fraction \frac{27}{6} to lowest terms by extracting and canceling out 3.
x+\frac{1}{2}+5\times \frac{9}{2}=15
Consider the first equation. Insert the known values of variables into the equation.
x+\frac{1}{2}+\frac{45}{2}=15
Multiply 5 and \frac{9}{2} to get \frac{45}{2}.
x+23=15
Add \frac{1}{2} and \frac{45}{2} to get 23.
x=15-23
Subtract 23 from both sides.
x=-8
Subtract 23 from 15 to get -8.
x=-8 y=\frac{1}{2} z=\frac{9}{2}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}