\left\{ \begin{array} { r } { x + y + z = 6 } \\ { 2 x - y + z = 3 } \\ { 3 x - z = 0 } \end{array} \right.
Solve for x, y, z
x=1
y=2
z=3
Share
Copied to clipboard
x=-y-z+6
Solve x+y+z=6 for x.
2\left(-y-z+6\right)-y+z=3 3\left(-y-z+6\right)-z=0
Substitute -y-z+6 for x in the second and third equation.
y=-\frac{1}{3}z+3 z=\frac{9}{2}-\frac{3}{4}y
Solve these equations for y and z respectively.
z=\frac{9}{2}-\frac{3}{4}\left(-\frac{1}{3}z+3\right)
Substitute -\frac{1}{3}z+3 for y in the equation z=\frac{9}{2}-\frac{3}{4}y.
z=3
Solve z=\frac{9}{2}-\frac{3}{4}\left(-\frac{1}{3}z+3\right) for z.
y=-\frac{1}{3}\times 3+3
Substitute 3 for z in the equation y=-\frac{1}{3}z+3.
y=2
Calculate y from y=-\frac{1}{3}\times 3+3.
x=-2-3+6
Substitute 2 for y and 3 for z in the equation x=-y-z+6.
x=1
Calculate x from x=-2-3+6.
x=1 y=2 z=3
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}