\left\{ \begin{array} { r } { 7 x + 3 y = - 15 } \\ { 12 y - 5 x = 39 } \end{array} \right.
Solve for x, y
x=-3
y=2
Graph
Share
Copied to clipboard
7x+3y=-15,-5x+12y=39
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
7x+3y=-15
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
7x=-3y-15
Subtract 3y from both sides of the equation.
x=\frac{1}{7}\left(-3y-15\right)
Divide both sides by 7.
x=-\frac{3}{7}y-\frac{15}{7}
Multiply \frac{1}{7} times -3y-15.
-5\left(-\frac{3}{7}y-\frac{15}{7}\right)+12y=39
Substitute \frac{-3y-15}{7} for x in the other equation, -5x+12y=39.
\frac{15}{7}y+\frac{75}{7}+12y=39
Multiply -5 times \frac{-3y-15}{7}.
\frac{99}{7}y+\frac{75}{7}=39
Add \frac{15y}{7} to 12y.
\frac{99}{7}y=\frac{198}{7}
Subtract \frac{75}{7} from both sides of the equation.
y=2
Divide both sides of the equation by \frac{99}{7}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=-\frac{3}{7}\times 2-\frac{15}{7}
Substitute 2 for y in x=-\frac{3}{7}y-\frac{15}{7}. Because the resulting equation contains only one variable, you can solve for x directly.
x=\frac{-6-15}{7}
Multiply -\frac{3}{7} times 2.
x=-3
Add -\frac{15}{7} to -\frac{6}{7} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=-3,y=2
The system is now solved.
7x+3y=-15,-5x+12y=39
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}7&3\\-5&12\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-15\\39\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}7&3\\-5&12\end{matrix}\right))\left(\begin{matrix}7&3\\-5&12\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}7&3\\-5&12\end{matrix}\right))\left(\begin{matrix}-15\\39\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}7&3\\-5&12\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}7&3\\-5&12\end{matrix}\right))\left(\begin{matrix}-15\\39\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}7&3\\-5&12\end{matrix}\right))\left(\begin{matrix}-15\\39\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{12}{7\times 12-3\left(-5\right)}&-\frac{3}{7\times 12-3\left(-5\right)}\\-\frac{-5}{7\times 12-3\left(-5\right)}&\frac{7}{7\times 12-3\left(-5\right)}\end{matrix}\right)\left(\begin{matrix}-15\\39\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{33}&-\frac{1}{33}\\\frac{5}{99}&\frac{7}{99}\end{matrix}\right)\left(\begin{matrix}-15\\39\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{33}\left(-15\right)-\frac{1}{33}\times 39\\\frac{5}{99}\left(-15\right)+\frac{7}{99}\times 39\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-3\\2\end{matrix}\right)
Do the arithmetic.
x=-3,y=2
Extract the matrix elements x and y.
7x+3y=-15,-5x+12y=39
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
-5\times 7x-5\times 3y=-5\left(-15\right),7\left(-5\right)x+7\times 12y=7\times 39
To make 7x and -5x equal, multiply all terms on each side of the first equation by -5 and all terms on each side of the second by 7.
-35x-15y=75,-35x+84y=273
Simplify.
-35x+35x-15y-84y=75-273
Subtract -35x+84y=273 from -35x-15y=75 by subtracting like terms on each side of the equal sign.
-15y-84y=75-273
Add -35x to 35x. Terms -35x and 35x cancel out, leaving an equation with only one variable that can be solved.
-99y=75-273
Add -15y to -84y.
-99y=-198
Add 75 to -273.
y=2
Divide both sides by -99.
-5x+12\times 2=39
Substitute 2 for y in -5x+12y=39. Because the resulting equation contains only one variable, you can solve for x directly.
-5x+24=39
Multiply 12 times 2.
-5x=15
Subtract 24 from both sides of the equation.
x=-3
Divide both sides by -5.
x=-3,y=2
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}