Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

50x+100y=2850,-x+y=9
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
50x+100y=2850
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
50x=-100y+2850
Subtract 100y from both sides of the equation.
x=\frac{1}{50}\left(-100y+2850\right)
Divide both sides by 50.
x=-2y+57
Multiply \frac{1}{50} times -100y+2850.
-\left(-2y+57\right)+y=9
Substitute -2y+57 for x in the other equation, -x+y=9.
2y-57+y=9
Multiply -1 times -2y+57.
3y-57=9
Add 2y to y.
3y=66
Add 57 to both sides of the equation.
y=22
Divide both sides by 3.
x=-2\times 22+57
Substitute 22 for y in x=-2y+57. Because the resulting equation contains only one variable, you can solve for x directly.
x=-44+57
Multiply -2 times 22.
x=13
Add 57 to -44.
x=13,y=22
The system is now solved.
50x+100y=2850,-x+y=9
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}50&100\\-1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2850\\9\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}50&100\\-1&1\end{matrix}\right))\left(\begin{matrix}50&100\\-1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}50&100\\-1&1\end{matrix}\right))\left(\begin{matrix}2850\\9\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}50&100\\-1&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}50&100\\-1&1\end{matrix}\right))\left(\begin{matrix}2850\\9\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}50&100\\-1&1\end{matrix}\right))\left(\begin{matrix}2850\\9\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{50-100\left(-1\right)}&-\frac{100}{50-100\left(-1\right)}\\-\frac{-1}{50-100\left(-1\right)}&\frac{50}{50-100\left(-1\right)}\end{matrix}\right)\left(\begin{matrix}2850\\9\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{150}&-\frac{2}{3}\\\frac{1}{150}&\frac{1}{3}\end{matrix}\right)\left(\begin{matrix}2850\\9\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{150}\times 2850-\frac{2}{3}\times 9\\\frac{1}{150}\times 2850+\frac{1}{3}\times 9\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}13\\22\end{matrix}\right)
Do the arithmetic.
x=13,y=22
Extract the matrix elements x and y.
50x+100y=2850,-x+y=9
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
-50x-100y=-2850,50\left(-1\right)x+50y=50\times 9
To make 50x and -x equal, multiply all terms on each side of the first equation by -1 and all terms on each side of the second by 50.
-50x-100y=-2850,-50x+50y=450
Simplify.
-50x+50x-100y-50y=-2850-450
Subtract -50x+50y=450 from -50x-100y=-2850 by subtracting like terms on each side of the equal sign.
-100y-50y=-2850-450
Add -50x to 50x. Terms -50x and 50x cancel out, leaving an equation with only one variable that can be solved.
-150y=-2850-450
Add -100y to -50y.
-150y=-3300
Add -2850 to -450.
y=22
Divide both sides by -150.
-x+22=9
Substitute 22 for y in -x+y=9. Because the resulting equation contains only one variable, you can solve for x directly.
-x=-13
Subtract 22 from both sides of the equation.
x=13
Divide both sides by -1.
x=13,y=22
The system is now solved.