Skip to main content
Solve for y, x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x+y=6,y^{2}-2x^{2}=8
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x+y=6
Solve x+y=6 for x by isolating x on the left hand side of the equal sign.
x=-y+6
Subtract y from both sides of the equation.
y^{2}-2\left(-y+6\right)^{2}=8
Substitute -y+6 for x in the other equation, y^{2}-2x^{2}=8.
y^{2}-2\left(y^{2}-12y+36\right)=8
Square -y+6.
y^{2}-2y^{2}+24y-72=8
Multiply -2 times y^{2}-12y+36.
-y^{2}+24y-72=8
Add y^{2} to -2y^{2}.
-y^{2}+24y-80=0
Subtract 8 from both sides of the equation.
y=\frac{-24±\sqrt{24^{2}-4\left(-1\right)\left(-80\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1-2\left(-1\right)^{2} for a, -2\times 6\left(-1\right)\times 2 for b, and -80 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-24±\sqrt{576-4\left(-1\right)\left(-80\right)}}{2\left(-1\right)}
Square -2\times 6\left(-1\right)\times 2.
y=\frac{-24±\sqrt{576+4\left(-80\right)}}{2\left(-1\right)}
Multiply -4 times 1-2\left(-1\right)^{2}.
y=\frac{-24±\sqrt{576-320}}{2\left(-1\right)}
Multiply 4 times -80.
y=\frac{-24±\sqrt{256}}{2\left(-1\right)}
Add 576 to -320.
y=\frac{-24±16}{2\left(-1\right)}
Take the square root of 256.
y=\frac{-24±16}{-2}
Multiply 2 times 1-2\left(-1\right)^{2}.
y=-\frac{8}{-2}
Now solve the equation y=\frac{-24±16}{-2} when ± is plus. Add -24 to 16.
y=4
Divide -8 by -2.
y=-\frac{40}{-2}
Now solve the equation y=\frac{-24±16}{-2} when ± is minus. Subtract 16 from -24.
y=20
Divide -40 by -2.
x=-4+6
There are two solutions for y: 4 and 20. Substitute 4 for y in the equation x=-y+6 to find the corresponding solution for x that satisfies both equations.
x=2
Add -4 to 6.
x=-20+6
Now substitute 20 for y in the equation x=-y+6 and solve to find the corresponding solution for x that satisfies both equations.
x=-14
Add -20 to 6.
x=2,y=4\text{ or }x=-14,y=20
The system is now solved.