\left\{ \begin{array} { l } { y = x - 30 } \\ { \frac { 40 } { 160 } x + \frac { 30 } { 100 } y = 131 } \end{array} \right.
Solve for y, x
x = \frac{2800}{11} = 254\frac{6}{11} \approx 254.545454545
y = \frac{2470}{11} = 224\frac{6}{11} \approx 224.545454545
Graph
Share
Copied to clipboard
y-x=-30
Consider the first equation. Subtract x from both sides.
\frac{1}{4}x+\frac{30}{100}y=131
Consider the second equation. Reduce the fraction \frac{40}{160} to lowest terms by extracting and canceling out 40.
\frac{1}{4}x+\frac{3}{10}y=131
Reduce the fraction \frac{30}{100} to lowest terms by extracting and canceling out 10.
y-x=-30,\frac{3}{10}y+\frac{1}{4}x=131
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
y-x=-30
Choose one of the equations and solve it for y by isolating y on the left hand side of the equal sign.
y=x-30
Add x to both sides of the equation.
\frac{3}{10}\left(x-30\right)+\frac{1}{4}x=131
Substitute x-30 for y in the other equation, \frac{3}{10}y+\frac{1}{4}x=131.
\frac{3}{10}x-9+\frac{1}{4}x=131
Multiply \frac{3}{10} times x-30.
\frac{11}{20}x-9=131
Add \frac{3x}{10} to \frac{x}{4}.
\frac{11}{20}x=140
Add 9 to both sides of the equation.
x=\frac{2800}{11}
Divide both sides of the equation by \frac{11}{20}, which is the same as multiplying both sides by the reciprocal of the fraction.
y=\frac{2800}{11}-30
Substitute \frac{2800}{11} for x in y=x-30. Because the resulting equation contains only one variable, you can solve for y directly.
y=\frac{2470}{11}
Add -30 to \frac{2800}{11}.
y=\frac{2470}{11},x=\frac{2800}{11}
The system is now solved.
y-x=-30
Consider the first equation. Subtract x from both sides.
\frac{1}{4}x+\frac{30}{100}y=131
Consider the second equation. Reduce the fraction \frac{40}{160} to lowest terms by extracting and canceling out 40.
\frac{1}{4}x+\frac{3}{10}y=131
Reduce the fraction \frac{30}{100} to lowest terms by extracting and canceling out 10.
y-x=-30,\frac{3}{10}y+\frac{1}{4}x=131
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}1&-1\\\frac{3}{10}&\frac{1}{4}\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-30\\131\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}1&-1\\\frac{3}{10}&\frac{1}{4}\end{matrix}\right))\left(\begin{matrix}1&-1\\\frac{3}{10}&\frac{1}{4}\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\\frac{3}{10}&\frac{1}{4}\end{matrix}\right))\left(\begin{matrix}-30\\131\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}1&-1\\\frac{3}{10}&\frac{1}{4}\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\\frac{3}{10}&\frac{1}{4}\end{matrix}\right))\left(\begin{matrix}-30\\131\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\\frac{3}{10}&\frac{1}{4}\end{matrix}\right))\left(\begin{matrix}-30\\131\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{\frac{1}{4}}{\frac{1}{4}-\left(-\frac{3}{10}\right)}&-\frac{-1}{\frac{1}{4}-\left(-\frac{3}{10}\right)}\\-\frac{\frac{3}{10}}{\frac{1}{4}-\left(-\frac{3}{10}\right)}&\frac{1}{\frac{1}{4}-\left(-\frac{3}{10}\right)}\end{matrix}\right)\left(\begin{matrix}-30\\131\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{5}{11}&\frac{20}{11}\\-\frac{6}{11}&\frac{20}{11}\end{matrix}\right)\left(\begin{matrix}-30\\131\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{5}{11}\left(-30\right)+\frac{20}{11}\times 131\\-\frac{6}{11}\left(-30\right)+\frac{20}{11}\times 131\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{2470}{11}\\\frac{2800}{11}\end{matrix}\right)
Do the arithmetic.
y=\frac{2470}{11},x=\frac{2800}{11}
Extract the matrix elements y and x.
y-x=-30
Consider the first equation. Subtract x from both sides.
\frac{1}{4}x+\frac{30}{100}y=131
Consider the second equation. Reduce the fraction \frac{40}{160} to lowest terms by extracting and canceling out 40.
\frac{1}{4}x+\frac{3}{10}y=131
Reduce the fraction \frac{30}{100} to lowest terms by extracting and canceling out 10.
y-x=-30,\frac{3}{10}y+\frac{1}{4}x=131
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
\frac{3}{10}y+\frac{3}{10}\left(-1\right)x=\frac{3}{10}\left(-30\right),\frac{3}{10}y+\frac{1}{4}x=131
To make y and \frac{3y}{10} equal, multiply all terms on each side of the first equation by \frac{3}{10} and all terms on each side of the second by 1.
\frac{3}{10}y-\frac{3}{10}x=-9,\frac{3}{10}y+\frac{1}{4}x=131
Simplify.
\frac{3}{10}y-\frac{3}{10}y-\frac{3}{10}x-\frac{1}{4}x=-9-131
Subtract \frac{3}{10}y+\frac{1}{4}x=131 from \frac{3}{10}y-\frac{3}{10}x=-9 by subtracting like terms on each side of the equal sign.
-\frac{3}{10}x-\frac{1}{4}x=-9-131
Add \frac{3y}{10} to -\frac{3y}{10}. Terms \frac{3y}{10} and -\frac{3y}{10} cancel out, leaving an equation with only one variable that can be solved.
-\frac{11}{20}x=-9-131
Add -\frac{3x}{10} to -\frac{x}{4}.
-\frac{11}{20}x=-140
Add -9 to -131.
x=\frac{2800}{11}
Divide both sides of the equation by -\frac{11}{20}, which is the same as multiplying both sides by the reciprocal of the fraction.
\frac{3}{10}y+\frac{1}{4}\times \frac{2800}{11}=131
Substitute \frac{2800}{11} for x in \frac{3}{10}y+\frac{1}{4}x=131. Because the resulting equation contains only one variable, you can solve for y directly.
\frac{3}{10}y+\frac{700}{11}=131
Multiply \frac{1}{4} times \frac{2800}{11} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
\frac{3}{10}y=\frac{741}{11}
Subtract \frac{700}{11} from both sides of the equation.
y=\frac{2470}{11}
Divide both sides of the equation by \frac{3}{10}, which is the same as multiplying both sides by the reciprocal of the fraction.
y=\frac{2470}{11},x=\frac{2800}{11}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}