\left\{ \begin{array} { l } { y = x - 1 } \\ { \frac { x ^ { 2 } } { 2 } + y ^ { 2 } = 1 } \end{array} \right.
Solve for y, x
x=0\text{, }y=-1
x=\frac{4}{3}\approx 1.333333333\text{, }y=\frac{1}{3}\approx 0.333333333
Graph
Share
Copied to clipboard
y-x=-1
Consider the first equation. Subtract x from both sides.
x^{2}+2y^{2}=2
Consider the second equation. Multiply both sides of the equation by 2.
y-x=-1,x^{2}+2y^{2}=2
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
y-x=-1
Solve y-x=-1 for y by isolating y on the left hand side of the equal sign.
y=x-1
Subtract -x from both sides of the equation.
x^{2}+2\left(x-1\right)^{2}=2
Substitute x-1 for y in the other equation, x^{2}+2y^{2}=2.
x^{2}+2\left(x^{2}-2x+1\right)=2
Square x-1.
x^{2}+2x^{2}-4x+2=2
Multiply 2 times x^{2}-2x+1.
3x^{2}-4x+2=2
Add x^{2} to 2x^{2}.
3x^{2}-4x=0
Subtract 2 from both sides of the equation.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1+2\times 1^{2} for a, 2\left(-1\right)\times 1\times 2 for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-4\right)±4}{2\times 3}
Take the square root of \left(-4\right)^{2}.
x=\frac{4±4}{2\times 3}
The opposite of 2\left(-1\right)\times 1\times 2 is 4.
x=\frac{4±4}{6}
Multiply 2 times 1+2\times 1^{2}.
x=\frac{8}{6}
Now solve the equation x=\frac{4±4}{6} when ± is plus. Add 4 to 4.
x=\frac{4}{3}
Reduce the fraction \frac{8}{6} to lowest terms by extracting and canceling out 2.
x=\frac{0}{6}
Now solve the equation x=\frac{4±4}{6} when ± is minus. Subtract 4 from 4.
x=0
Divide 0 by 6.
y=\frac{4}{3}-1
There are two solutions for x: \frac{4}{3} and 0. Substitute \frac{4}{3} for x in the equation y=x-1 to find the corresponding solution for y that satisfies both equations.
y=\frac{1}{3}
Add 1\times \frac{4}{3} to -1.
y=-1
Now substitute 0 for x in the equation y=x-1 and solve to find the corresponding solution for y that satisfies both equations.
y=\frac{1}{3},x=\frac{4}{3}\text{ or }y=-1,x=0
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}