\left\{ \begin{array} { l } { y = x ^ { 2 } - x + 1 } \\ { x = \frac { 13 } { 9 } } \end{array} \right.
Solve for y, x
x = \frac{13}{9} = 1\frac{4}{9} \approx 1.444444444
y = \frac{133}{81} = 1\frac{52}{81} \approx 1.641975309
Graph
Share
Copied to clipboard
y=\left(\frac{13}{9}\right)^{2}-\frac{13}{9}+1
Consider the first equation. Insert the known values of variables into the equation.
y=\frac{169}{81}-\frac{13}{9}+1
Calculate \frac{13}{9} to the power of 2 and get \frac{169}{81}.
y=\frac{52}{81}+1
Subtract \frac{13}{9} from \frac{169}{81} to get \frac{52}{81}.
y=\frac{133}{81}
Add \frac{52}{81} and 1 to get \frac{133}{81}.
y=\frac{133}{81} x=\frac{13}{9}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}